
1

1

CSE 421: Introduction to

Algorithms

Dynamic Programming

Paul Beame

2

Dynamic Programming

� Dynamic Programming
� Give a solution of a problem using smaller

sub-problems where all the possible
sub-problems are determined in advance

� Useful when the same sub-problems show
up again and again in the solution

3

A simple case:
Computing Fibonacci Numbers

� Recall Fn=Fn-1+Fn-2 and F0=0, F1=1

� Recursive algorithm:
� Fibo(n)

if n=0 then return(0)
else if n=1 then return(1)
else return(Fibo(n-1)+Fibo(n-2))

4

Call tree - start

F (6)

F (5) F (4)

F (3)

F (4)

F (2)

F (2)

F (3)

F (1) F (0)

1 0

F (1)

5

Full call tree

F (6)

F (2)

F (5) F (4)

F (3)

F (4)

F (2)

F (2)

F (3)F (3)

F (1) F (0)

1 0

F (0)

01

F (1)

F (1) F (0)

1 0
F (1)

F (2) F (1)

1
F (0)

1 0

F (2) F (1)

1
F (0)

1 0

F (1)

1

F (1)

6

Memoization (Caching)

� Remember all values from previous
recursive calls

� Before recursive call, test to see if value
has already been computed

� Dynamic Programming
� Convert memoized algorithm from a

recursive one to an iterative one

2

7

Fibonacci
Dynamic Programming Version

� FiboDP(n):
F[0]← 0
F[1] ←1
for i=2 to n do

F[i]←F[i-1]+F[i-2]
endfor
return(F[n])

8

Fibonacci: Space-Saving Dynamic
Programming

� FiboDP(n):
prev ← 0
curr ←1
for i=2 to n do

temp ←curr
curr ←curr +prev
prev ←temp

endfor
return(curr)

9

Dynamic Programming

� Useful when
� same recursive sub-problems occur

repeatedly
� Can anticipate the parameters of these

recursive calls
� The solution to whole problem can be

figured out with knowing the internal details
of how the sub-problems are solved
� principle of optimality

“Optimal solutions to the sub-problems suffice for
optimal solution to the whole problem”

10

Three Steps to
Dynamic Programming

� Formulate the answer as a recurrence
relation or recursive algorithm

� Show that the number of different values of
parameters in the recursive calls is “small”
� e.g., bounded by a low-degree polynomial
� Can use memoization

� Specify an order of evaluation for the
recurrence so that you already have the
partial results ready when you need them.

11

Weighted Interval Scheduling

� Same problem as interval scheduling
except that each request i also has an
associated value or weight w i
� w i might be

� amount of money we get from renting
out the resource for that time period

� amount of time the resource is being
used w i=f i-s i

� Goal: Find compatible subset S of
requests with maximum total weight

12

Greedy Algorithms for Weighted
Interval Scheduling?

� No criterion seems to work
� Earliest start time s i

� Doesn’t work

� Shortest request time f i-s i

� Doesn’t work

� Fewest conflicts
� Doesn’t work

� Earliest finish fime f i

� Doesn’t work
� Largest weight w i

� Doesn’t work

3

13

Towards Dynamic Programming:
Step 1 – A Recursive Algorithm

� Suppose that like ordinary interval scheduling
we have first sorted the requests by finish
time f i so f1 ≤≤≤≤f2 ≤≤≤≤…≤≤≤≤ fn

� Say request i comes before request j if i<<<< j
� For any request j let p(j) be

� the largest-numbered request before j that is
compatible with j

� or 0 if no such request exists

� Therefore {1,…,p(j)} is precisely the set of
requests before j that are compatible with j

14

Towards Dynamic Programming:
Step 1 – A Recursive Algorithm

� Two cases depending on whether an
optimal solution O includes request n
� If it does include request n then all other

requests in O must be contained in
{1,…,p(n)}
� Not only that!

� Any set of requests in {1,…,p(n) } will be
compatible with request n

� So in this case the optimal solution O must
contain an optimal solution for {1,…,p(n) }

� “Principle of Optimality”

15

Towards Dynamic Programming:
Step 1 – A Recursive Algorithm

� Two cases depending on whether an
optimal solution O includes request n
� If it does not include request n then all

requests in O must be contained in
{1,…, n-1}
� Not only that!

� The optimal solution O must contain an
optimal solution for {1,…, n-1}

� “Principle of Optimality”

16

Towards Dynamic Programming:
Step 1 – A Recursive Algorithm

� All subproblems involve requests {1,..,i}
for some i

� For i=1,…,n let OPT(i) be the weight of
the optimal solution to the problem
{1,…,i}

� The two cases give
OPT(n)=max(wn+OPT(p(n)),OPT(n-1))

� Also
� n∈∈∈∈O iff wn+OPT(p(n))>OPT(n-1)

17

Towards Dynamic Programming:
Step 1 – A Recursive Algorithm

� Sort requests and compute array p[i] for
each i=1,…,n

ComputeOpt(n)
if n=0 then return(0)
else

u←ComputeOpt(p[n])
v←ComputeOpt(n-1)
if wn+u>v then return(wn+u)

else return(v)
endif

18

Towards Dynamic Programming:
Step 2 – Small # of parameters

� ComputeOpt(n) can take exponential
time in the worst case
� 2n calls if p(i)=i-1 for every i

� There are only n possible parameters to
ComputeOpt

� Store these answers in an array OPT[n]
and only recompute when necessary
� Memoization

� Initialize OPT[i]=0 for i=1,…,n

4

19

Dynamic Programming:
Step 2 – Memoization

ComputeOpt(n)
if n=0 then return(0)
else

u←MComputeOpt(p[n])
v←MComputeOpt(n-1)
if wn+u>v then

return(wn+u)
else return(v)

endif

MComputeOpt(n)
if OPT[n] =0 then
v←ComputeOpt(n)
OPT[n]←v
return(v)

else
return(OPT[n])
endif

20

Dynamic Programming Step 3:
Iterative Solution

� The recursive calls for parameter n have parameter
values i that are < n

IterativeComputeOpt(n)
array OPT[0..n]
OPT[0]←0
for i=1 to n

if w i+OPT[p[i]] >OPT[i-1] then
OPT[i] ←w i+OPT[p[i]]

else
OPT[i] ←OPT[i-1]

endif
endfor

21

Producing the Solution

IterativeComputeOptSolution(n)
array OPT[0..n], Used [1..n]
OPT[0]←0
for i=1 to n

if w i+OPT[p[i]] >OPT[i-1] then
OPT[i] ←w i+OPT[p[i]]
Used [i]←1

else
OPT[i] ← OPT[i-1]
Used [i] ←0

endif
endfor

i←n
S←∅∅∅∅
while i> 0 do

if Used [i]=1 then
S←S ∪∪∪∪ {i}
i←p[i]

else
i←i-1

endif
endwhile

22

Example

277235473

2019181714131097

18121115118624
si

fi

wi

p[i]

OPT[i]

Used[i]

1 2 3 4 5 6 7 8 9

23

Example

733531000

277235473

2019181714131097

18121115118624
si

fi

wi

p[i]

OPT[i]

Used[i]

1 2 3 4 5 6 7 8 9

24

Example

16141412108773

733531000

277235473

2019181714131097

18121115118624
si

fi

wi

p[i]

OPT[i]

Used[i] 1 1 0 1 1 1 1 0 1

1 2 3 4 5 6 7 8 9

5

25

Example

16141412108773

733531000

277235473

2019181714131097

18121115118624
si

fi

wi

p[i]

OPT[i]

Used[i] 1 1 0 1 1 1 1 0 1

S={9,7,2}

1 2 3 4 5 6 7 8 9

26

Segmented Least Squares

� Least Squares
� Given a set P of n points in the plane

p1=(x1,y1),…,pn=(xn,yn) with x1<…< xn
determine a line L given by y=ax+b that
optimizes the totaled ‘squared error’

� Error(L,P)=Σi(y i-ax i-b)2

� A classic problem in statistics
� Optimal solution is known (see text)

� Call this line(P) and its error error(P)

27

Least Squares

28

Segmented Least Squares

� What if data seems to follow a
piece-wise linear model?

29

Segmented Least Squares

30

Segmented Least Squares

6

31

Segmented Least Squares

� What if data seems to follow a piece-wise
linear model?

� Number of pieces to choose is not obvious
� If we chose n-1 pieces we could fit with 0

error
� Not fair

� Add a penalty of C times the number of
pieces to the error to get a total penalty

� How do we compute a solution with the
smallest possible total penalty?

32

Segmented Least Squares

� Recursive idea
� If we knew the point p j where the last line

segment began then we could solve the
problem optimally for points p1,...,p j and
combine that with the last segment to get a
global optimal solution
� Let OPT(i) be the optimal penalty for

points {p1,…,p i}
� Total penalty for this solution would be

Error({p j,…,pn}) + C + OPT(j-1)

33

Segmented Least Squares

34

Segmented Least Squares

� Recursive idea
� We don’t know which point is p j

� But we do know that 1≤≤≤≤j≤≤≤≤n
� The optimal choice will simply be the

best among these possibilities
� Therefore

OPT(n)=min 1≤≤≤≤j≤≤≤≤n {Error({p j,…,pn}) + C +

OPT(j-1)}

35

Dynamic Programming Solution

SegmentedLeastSquares(n)
array OPT[0..n], Begin [1..n]
OPT[0]←0
for i=1 to n

OPT[i]←←←←Error {(p1,…,p i)}+C
Begin [i]←←←←1
for j=2 to i-1

e←Error {(p j,…,p i)}+C+OPT[j-1]
if e <OPT[i] then

OPT[i] ←e
Begin [i]←j

endif
endfor

endfor
return(OPT[n])

FindSegments
i←n
S←∅∅∅∅
while i> 1 do

compute Line ({pBegin[i] ,…,p i})
output (pBegin [i],p i), Line
i←Begin [i]

endwhile

36

Knapsack (Subset-Sum) Problem

� Given:
� integer W (knapsack size)
� n object sizes x1, x2, … , xn

� Find:
� Subset S of {1,…, n} such that

but is as large as possible
i

i S

x W
∈

≤∑
i

i S

x
∈
∑

7

37

Recursive Algorithm

� Let K(n,W) denote the problem to solve
for W and x1, x2, … , xn

� For n>0,
� The optimal solution for K(n,W) is the better

of the optimal solution for either
� K(n-1,W) or xn+K(n-1,W-xn)
� For n=0

� K(0,W) has a trivial solution of an empty
set S with weight 0

38

Recursive calls

� Recursive calls on list …,3, 4, 7

K(n,W)

K(n-1,W-7)

K(n-3,W-7)

K(n-2,W-4)

K(n-1,W)

K(n-2,W-7)

K(n-3,W-7)

39

Common Sub-problems

� Only sub-problems are K(i,w) for
� i = 0,1,..., n
� w = 0,1,..., W

� Dynamic programming solution
� Table entry for each K(i,w)

� OPT - value of optimal soln for first i
objects and weight w

� belong flag - is x i a part of this solution?
� Initialize OPT[0,w] for w=0,...,W
� Compute all OPT[i,*] from OPT[i-1,*] for i>0

40

Dynamic Knapsack Algorithm

for w=0 to W; OPT[0,w] ← 0; end for
for i=1 to n do

for w=0 to W do
OPT[i,w]←OPT[i-1,w]
belong [i,w]←0
if w ≥≥≥≥ x i then

val ←x i+OPT[i,w-x i]
if val>OPT[i,w] then

OPT[i,w]←val
belong [i,w]←1

end for
end for
return(OPT[n,W])

Time O(nW)

41

Sample execution on 2, 3, 4, 7 with
K=15

42

Saving Space

� To compute the value OPT of the
solution only need to keep the last two
rows of OPT at each step

� What about determining the set S?
� Follow the belong flags O(n) time
� What about space?

8

43

Three Steps to
Dynamic Programming

� Formulate the answer as a recurrence
relation or recursive algorithm

� Show that the number of different values of
parameters in the recursive algorithm is
“small”
� e.g., bounded by a low-degree polynomial

� Specify an order of evaluation for the
recurrence so that you already have the
partial results ready when you need them.

44

RNA Secondary Structure:
Dynamic Programming on Intervals

� RNA: sequence of bases
� String over alphabet {A, C, G, U}

U-G-U-A-C-C-G-G-U-A-G-U-A-C-A

� RNA folds and sticks to itself like a zipper
� A bonds to U
� C bonds to G
� Bends can’t be sharp
� No twisting or criss-crossing

� How the bonds line up is called the RNA
secondary structure

45

RNA Secondary Structure

A

A

A
A

A

A A CC

C

C

C

C

U

U G

U

U

U

U

G

G

G
G

G

G

G

G

A

A A

A

C

C

C

C

ACGAUACUGCAAUCUCUGUGACGAACCCAGCGAGGUGUA

U

U

G

46

Another view of
RNA Secondary Structure

A---C---A---U---C---U---G---U---G---A---C---G---A---U---G---U-- -A

UA

A

A

C

C

U

U

U

G

G

G
A
C

U
G

A
No crossing

47

RNA Secondary Structure

� Input: String x1...xn∈{A,C,G,U}*
� Output: Maximum size set S of pairs (i,j)

such that
� {x i,x j}={A,U} or {x i,x j} ={C,G}
� The pairs in S form a matching
� i<j-4 (no sharp bends)
� No crossing pairs

� If (i,j) and (k,l) are in S then it is not the
case that they cross as in i<k<j<l

48

Recursion Solution

� Try all possible matches for the last
base

jk

OPT(1..k-1) OPT(k+1..j-1)

1

Doesn’t start at 1

OPT(1..j)=1+MAXk=1..j-5 (OPT(1..k-1)+OPT(k+1..j-1))
xk matches x j

OPT(i..j)=1+MAXk=1..j-5 (OPT(i..k-1)+OPT(k+1..j-1))
xk matches x j

General form:

9

49

RNA Secondary Structure

� 2D Array OPT(i,j) for i≤j represents optimal # of
matches entirely for segment i..j

� For j-i ≤4 set OPT(i,j)=0 (no sharp bends)
� Then compute OPT(i,j) values when

j-i=5,6,...,n-1 in turn using recurrence.
� Return OPT(1,n)
� Total of O(n3) time
� Can also record matches along the way to produce S

� Algorithm is similar to the polynomial-time algorithm for
Context-Free Languages based on Chomsky Normal Form
from 322

� Both use dynamic programming over intervals

50

Sequence Alignment:
Edit Distance

� Given:
� Two strings of characters A=a1 a2 ... an and

B=b1 b2 ... bm

� Find:
� The minimum number of edit steps needed

to transform A into B where an edit can be:
� insert a single character
� delete a single character
� substitute one character by another

51

Sequence Alignment vs Edit Distance

� Sequence Alignment
� Insert corresponds to aligning with a “–” in the first

string
� Cost δδδδ (in our case 1)

� Delete corresponds to aligning with a “–” in the
second string

� Cost δδδδ (in our case 1)
� Replacement of an a by a b corresponds to a

mismatch
� Cost ααααab (in our case 1 if a≠≠≠≠b and 0 if a=b)

� In Computational Biology this alignment
algorithm is attributed to Smith & Waterman

52

Applications

� "diff" utility – where do two files differ
� Version control & patch distribution –

save/send only changes
� Molecular biology

� Similar sequences often have similar origin
and function

� Similarity often recognizable despite
millions or billions of years of evolutionary
divergence

53 54

Recursive Solution

� Sub-problems: Edit distance problems
for all prefixes of A and B that don’t
include all of both A and B

� Let D(i,j) be the number of edits
required to transform a1 a2 ... ai into
b1 b2 ... b j

� Clearly D(0,0)=0

10

55

Computing D(n,m)

� Imagine how best sequence handles
the last characters an and bm

� If best sequence of operations
� deletes an then D(n,m)=D(n-1,m)+1
� inserts bm then D(n,m)=D(n,m-1)+1
� replaces an by bm then

D(n,m)=D(n-1,m-1)+1
� matches an and bm then

D(n,m)=D(n-1,m-1)

56

Recursive algorithm D(n,m)

if n=0 then
return (m)

elseif m=0 then
return(n)

else
if an=bm then

replace-cost ← 0
else

replace-cost ← 1
endif
return(min { D(n-1, m) + 1,

D(n, m-1) +1,
D(n-1, m-1) + replace-cost })

cost of substitution of an by bm (if used)

57

for j = 0 to m; D(0,j) ← j; endfor
for i = 1 to n; D(i,0) ← i; endfor
for i = 1 to n

for j = 1 to m
if ai=b j then

replace-cost ← 0
else

replace-cost ← 1
endif
D(i,j) ←←←← min { D(i-1, j) + 1,

D(i, j-1) + 1,
D(i-1, j-1) + replace-cost }

endfor
endfor

Dynamic
Programming

D(i-1, j-1) D(i-1, j)

D(i, j-1) D(i, j)
ai

b j

ai-1

b j-1

...
...

…

…

...
...

58

Example run with
AGACATTG and GAGTTA

A G A C A T T G
0 1 2 3 4 5 6 7 8

0

G 1

A 2

G 3

T 4

T 5

A 6

59

Example run with
AGACATTG and GAGTTA

A G A C A T T G

G
 A

 G
 T

 T
 A

0 1 2 3 4 5 6 7 8
1 1 1 2 3 4 5 6 7

2

3

4

5

6

60

Example run with
AGACATTG and GAGTTA

A G A C A T T G

G
 A

 G
 T

 T
 A

0 1 2 3 4 5 6 7 8
1 1 1 2 3 4 5 6 7

2 1 2 1

4

5

6

3

11

61

Example run with
AGACATTG and GAGTTA

A G A C A T T G

G
 A

 G
 T

 T
 A

0 1 2 3 4 5 6 7 8
1 1 1 2 3 4 5 6 7

2 1 2 1 2 3 4 5 6

3 2 1 2 2 3 4 5 5

4

5

6

62

Example run with
AGACATTG and GAGTTA

A G A C A T T G

G
 A

 G
 T

 T
 A

0 1 2 3 4 5 6 7 8
1 1 1 2 3 4 5 6 7

2 1 2 1 2 3 4 5 6

3 2 1 2 2 3 4 5 5

4 3 2 2 3 3 3 4 5

5 4 3 3 3 4 3 3 4

6 5 4 3 4 3 4 4 4

63

Example run with
AGACATTG and GAGTTA

A G A C A T T G

G
 A

 G
 T

 T
 A

0 1 2 3 4 5 6 7 8
1 1 1 2 3 4 5 6 7

2 1 2 1 2 3 4 5 6

3 2 1 2 2 3 4 5 5

4 3 2 2 3 3 3 4 5

5 4 3 3 3 4 3 3 4

6 5 4 3 4 3 4 4 4

64

Example run with
AGACATTG and GAGTTA

A G A C A T T G

G
 A

 G
 T

 T
 A

0 1 2 3 4 5 6 7 8
1 1 1 2 3 4 5 6 7

2 1 2 1 2 3 4 5 6

3 2 1 2 2 3 4 5 5

4 3 2 2 3 3 3 4 5

5 4 3 3 3 4 3 3 4

6 5 4 3 4 3 4 4 4

65

Reading off the operations

� Follow the sequence and use each
color of arrow to tell you what operation
was performed.

� From the operations can derive an
optimal alignment

A G A C A T T G
_ G A G _ T T A

66

Saving Space

� To compute the distance values we only need the
last two rows (or columns)
� O(min(m,n)) space

� To compute the alignment/sequence of operations
� seem to need to store all O(mn) pointers/arrow colors

� Nifty divide and conquer variant that allows one to do
this in O(min(m,n)) space and retain O(mn) time
� In practice the algorithm is usually run on smaller chunks of

a large string, e.g. m and n are lengths of genes so a few
thousand characters

� Researchers want all alignments that are close to optimal
� Basic algorithm is run since the whole table of pointers

(2 bits each) will fit in RAM
� Ideas are neat, though

12

67

Saving space

� Alignment corresponds to a path through the table
from lower right to upper left
� Must pass through the middle column

� Recursively compute the entries for the middle
column from the left
� If we knew the cost of completing each then we could figure

out where the path crossed
� Problem

� There are n possible strings to start from.

� Solution
� Recursively calculate the right half costs for each entry in this

column using alignments starting at the other ends of the two input
strings!

� Can reuse the storage on the left when solving the right
hand problem

68

Shortest paths with negative cost
edges (Bellman-Ford)

� Dijsktra’s algorithm failed with negative-cost
edges
� What can we do in this case?
� Negative-cost cycles could result in shortest paths

with length -∞∞∞∞

� Suppose no negative-cost cycles in G
� Shortest path from s to t has at most n-1 edges

� If not, there would be a repeated vertex which
would create a cycle that could be removed
since cycle can’t have –ve cost

69

Shortest paths with negative cost
edges (Bellman-Ford)

� We want to grow paths from s to t based
on the # of edges in the path

� Let Cost(s,t,i)=cost of minimum-length
path from s to t using up to i hops.
� Cost(v,t,0)= 0 if v=t

∞∞∞∞ otherwise

� Cost(v,t,i)=min{Cost(v,t,i-1),
min(v,w) ∈∈∈∈E(cvw+Cost(w,t,i-1))}

70

Bellman-Ford

� Observe that the recursion for
Cost(s,t,i) doesn’t change t
� Only store an entry for each v and i

� Termed OPT(v,i) in the text

� Also observe that to compute OPT(*,i)
we only need OPT(*,i-1)
� Can store a current and previous copy in

O(n) space.

71

Bellman-Ford

ShortestPath(G,s,t)

for all v∈∈∈∈V
OPT[v]←∞∞∞∞

OPT[t]←0
for i=1 to n-1 do

for all v∈∈∈∈V do
OPT’[v]←min(v,w) ∈∈∈∈E (cvw+OPT[w])

for all v∈∈∈∈V do
OPT[v]←min(OPT’[v],OPT[v])

O(mn) time

return OPT[s]

72

Negative cycles

� Claim: There is a negative-cost cycle that can reach t
iff for some vertex v∈∈∈∈V, Cost(v,t,n)<Cost(v,t,n-1)

� Proof:
� We already know that if there aren’t any then we only need

paths of length up to n-1
� For the other direction

� The recurrence computes Cost (v,t,i) correctly for any
number of hops i

� The recurrence reaches a fixed point if for every v∈∈∈∈V,
Cost (v,t,i)=Cost (v,t,i-1)

� A negative-cost cycle means that eventually some
Cost (v,t,i) gets smaller than any given bound

� Can’t have a –ve cost cycle if for every v∈∈∈∈V,
Cost (v,t,n)=Cost (v,t,n-1)

13

73

Last details

� Can run algorithm and stop early if the OPT
and OPT’ arrays are ever equal
� Even better, one can update only neighbors v of

vertices w with OPT’[w]≠OPT[w]

� Can store a successor pointer when we
compute OPT
� Homework assignment

� By running for step n we can find some vertex
v on a negative cycle and use the successor
pointers to find the cycle

74

Bellman-Ford

∞∞∞∞

∞∞∞∞

∞∞∞∞∞∞∞∞

∞∞∞∞

t

6

2

- 4

5

-2

-3
8

7

9

7

75

Bellman-Ford

∞∞∞∞

0

∞∞∞∞∞∞∞∞

∞∞∞∞

t

6

2

- 4

5

-2

-3
8

7

9

7

76

Bellman-Ford

∞∞∞∞

0

7∞∞∞∞

6

t

6

2

- 4

5

-2

-3
8

7

9

7

77

Bellman-Ford

4

0

72

6

t

6

2

- 4

5

-2

-3
8

7

9

7

78

Bellman-Ford

4

0

72

2

t

6

2

- 4

5

-2

-3
8

7

9

7

14

79

Bellman-Ford

4

0

7-2

2

t

6

2

- 4

5

-2

-3
8

7

9

7

80

Bellman-Ford

4

0

7-2

2

t

6

2

- 4

5

-2

-3
8

7

9

7

81

Bellman-Ford with a DAG

1

4
3

12

10

8

9

11

13

14

5
6

7

2

Edges only go from lower to higher-numbered vertices
• Update distances in reverse order of topological sort
• Only one pass through vertices required
• O(n+m) time

