
Name: 1 /20
2 / 8
3 /17
4 /15
5 / 8

total /68

CSE 421

Final Exam
March 18 , 2002

Instructions:

• You have 1 hour and 50 minutes to complete the exam.

• Please do not turn the page until you are instructed to do so.

• Good luck!

1



1. (20 points, 2 each) Indicate for each of the following if it is true or false or in some
cases not-known by circling the appropriate answer.

• True or False: Suppose that we have the recurrence f(i) = max(i+ f(i− 4), 2i+
f(i−2)), and we know that f(i) = 0 for i = 1, 2, 3, 4. Then dynamic programming
allows us to calculate f(n) in time O(n).

• True or False: Let S be a set of elements. Suppose that we have the recur-
rence OPT (S) = mins∈S(OPT (S − {s}) + w(s)), where w(s) is the weight
of s, and OPT (∅) = 0. Then dynamic programming allows us to calculate
OPT ({1, 2, . . . , n}) in time O(n2).

• True or False: Consider the problem of shortest paths in a graph G where edges
can have negative weights. Recall that we defined Opt(i, v) to be the length of
the shortest path from s to v that uses at most i edges. Suppose that there is a
some vertex w such that Opt(n, w) 6= Opt(n − 1, w) (where n is the number of
nodes in the graph). Then G has a negative cycle.

• True or False: Same setup as previous question. Suppose that Opt(1, v) =
Opt(2, v) for all v (in a graph where there are n > 2 vertices). Then G has
no negative cycle reachable from s.

• True or False: There is no valid circulation in a graph that has a demand of 1 at
every node.

• True or False or Unknown: We know of a problem in NP that is also in P.

• True or False or Unknown: Suppose that X and Y are both in P. Then there is
a polytime reduction from X to Y .

• True or False or Unknown: Suppose that X ≤P Y . Then Y ≤P X.

• True or False: Suppose that X ≤P Y , X is NP-complete and Y ∈ NP. Then
Y ≤P X.

• True or False or Unknown: Suppose that SAT≤P X and SAT≤P Y . Then
X ≤P Y .

2. (8 points, 2 each) Indicate for each of the following if it is true or false by circling
the appropriate answer. In all of the following, you are given an s-t flow network G,
where c(u, v) is the capacity of edge (u, v).

• True or False: Let f be a maximum flow in G, where f(u, v) is the flow
on edge (u, v). Let (A1, B1) and (A2, B2) be two minimum s-t cuts. Then
∑

u∈A1,v∈B1
f(u, v) =

∑
u∈A2,v∈B2

c(u, v).

• True or False: Let f be a maximum flow in G. Let (A1, B1) and (A2, B2) be
two minimum s-t cuts. Then

∑
u∈B1,v∈A1, c(u, v) =

∑
u∈B2,v∈A2

c(u, v). (Pay close
attention to the subscripts.)

• True or False: Let f be a maximum flow in G. Let (A1, B1) be a minimum s-t
cut. Then

∑
u∈B1,v∈A1

f(u, v) = 0.

• True or False: Suppose there is an s-t cut in G with total capacity C. Then there
is a flow of value C in G.

2



3. (17 points) Consider the following flow network, with a flow f shown. An edge labelled
with “a/b” means that the flow on that edge is a and the capacity of the edge is b.

(a) (4 points) Draw the residual graph Gf . Indicate each edge (with its directionality)
in the residual graph and, next to it, its residual capacity.

(b) (4 points) What augmenting path has the maximum bottleneck capacity? (Specify
the names of the vertices on the path in order.) What is the bottleneck capacity
of this path?

3



(c) (4 points) Indicate the new flow on each edge on the following diagram after

augmenting along the path specified in step 2.

(d) (5 points) Give an example of a circulation with demands problem with
∑

v dv = 0
where there is no feasible solution. Your circulation problem should fit in the space
given. Give your example by drawing the flow network, indicating the capacities
on each edge and the demands of each node. Please try to make your example as
small as possible.

4



4. (15 points) In a word processor, the goal of “pretty-printing” is to take text with a
ragged right margin — like this:

Call me Ishmael.

Some years ago,

never mind how long precisely,

having little or no money in my purse,

and nothing particular to interest me on shore,

— and turn it into text whose right margin is as “even” as possible — like this:

Call me Ishmael. Some years ago, never

mind how long precisely, having little

or no money in my purse, and nothing

particular to interest me on shore,

We formulate the problem of pretty-printing as follows. Suppose our text consists of a
sequence of words W = {w1, w2, . . . , wn}.

A formatting of W consists of a partition of the words in W into lines. Let Bi,j be
the “badness” of putting the sequence of words wi, wi+1, . . . , wj on a single line. (For
example, Bi,j = ∞ if these words don’t fit on a line. Otherwise, it is a measure of how
much space is left over at the right margin. Thus, we want to choose lines that have
small badness values.)

Specifically, our goal is to construct a partition of a set of words W into lines so
as to minimize the sum of the squares of the badness of all lines. For example, if
W = w1, . . . , wn are partitioned into two lines, say w1, . . . wi and wi+1, . . . wn, then the
value of the solution is B2

1,i + B2
i+1,n. But there may be a different partition (possibly

into a different number of lines) that has smaller value.

• (8 points) Give a recurrence for OPT [i], the value of the optimal solution on the
set of words Wi = {w1, . . . , wi}. You may assume that Bi,j for all i ≤ j is part of
the input. You do not need to explain your recurrence. Be sure to specify a base
case.

5



• (4 points) What is the running time (in big Oh notation) of the dynamic pro-
gramming algorithm that determines the value of the optimal solution for Wn?
You do not need to give the algorithm.

• (3 points) What is the running time (in big Oh notation) of the dynamic pro-
gramming algorithm that determines the actual partition in the optimal solution
for Wn? You do not need to give the algorithm.

6



5. (8 points)

You are given an array A[1..n] of values from some universe. Each pair of array values
are either the same or not. The only feasible operation on these values that you can do
is to pick two array entries and perform a constant-time test of the form “A[i] = A[j]?”.
Your goal is to design an algorithm that determines if there is any value that occurs
strictly more than n/2 times in the array.

Your basic recursive procedure

Solve(A[i, .., j])

returns a pair (b, v) such that b is “yes” if there is a value that occurs strictly more
than (j − i + 1)/2 times in the input array and “no” otherwise, and v is the value that
occurs in a majority of array entries if there is one.

Fill in the missing portion of the following high-level psuedocode for a divide and
conquer solution to this problem. Your solution should be such that the resulting
algorithm runs in O(n logn) time. Also your solution should fit on this page. No
explanations are needed.

(b1, v1) :=Solve(A[1..n]);
begin

If n = 1 return (yes, A[1]);
If n = 2

test if the two values are equal ;

return (yes, A[1]) if they are equal,

or (no, X) otherwise.

(b1, v1) :=Solve(A[1..bn/2c]);
(b2, v2) :=Solve(A[bn/2c + 1..n]);

end

7


