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CSE 421
Algorithms

Richard Anderson
Lecture 28

NP-Completeness

Populating the NP-Completeness 
Universe

• Circuit Sat <P 3-SAT
• 3-SAT <P Independent Set
• 3-SAT <P Vertex Cover
• Independent Set <P Clique
• 3-SAT <P Hamiltonian Circuit
• Hamiltonian Circuit <P Traveling Salesman
• 3-SAT <P Integer Linear Programming
• 3-SAT <P Graph Coloring
• 3-SAT <P Subset Sum
• Subset Sum <P Scheduling with Release times and 

deadlines

Cook’s Theorem

• The Circuit Satisfiability Problem is NP-
Complete

• Circuit Satisfiability
– Given a boolean circuit, determine if there is 

an assignment of boolean values to the input 
to make the output true
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Find a satisfying assignment

Proof of Cook’s Theorem

• Reduce an arbitrary problem Y in NP to X
• Let A be a non-deterministic polynomial 

time algorithm for Y
• Convert A to a circuit, so that Y is a Yes 

instance iff and only if the circuit is 
satisfiable

Satisfiability

• Given a boolean formula, does there exist 
a truth assignment to the variables to 
make the expression true
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Definitions

• Boolean variable:  x1, …, xn
• Term: xi or its negation !xi
• Clause: disjunction of terms

– t1 or t2 or … tj
• Problem:

– Given a collection of clauses C1, . . ., Ck, does 
there exist a truth assignment that makes all 
the clauses true

– (x1 or !x2), (!x1 or !x3), (x2 or !x3)

3-SAT

• Each clause has exactly 3 terms
• Variables x1, . . ., xn

• Clauses C1, . . ., Ck
– Cj = (tj1 or tj2 or tj3)

• Fact: Every instance of SAT can be 
converted in polynomial time to an 
equivalent instance of 3-SAT

Find a satisfying truth assignment

(x || y || z) && (!x || !y || !z) && (!x || y) && (x || !y) && (y || !z) && (!y || z)

Theorem: CircuitSat <P 3-SAT

Theorem: 3-SAT <P IndSet Sample Problems

• Independent Set
– Graph G = (V, E), a subset S of the vertices is 

independent if there are no edges between 
vertices in S
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Vertex Cover

• Vertex Cover
– Graph G = (V, E), a subset S of the vertices is 

a vertex cover if every edge in E has at least 
one endpoint in S
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IS <P VC

• Lemma: A set S is independent iff V-S is a 
vertex cover

• To reduce IS to VC, we show that we can 
determine if a graph has an independent 
set of size K by testing for a Vertex cover 
of size n - K

IS <P VC
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Find an maximum independent 
set S

Show that V-S is a vertex 
cover

Clique

• Clique
– Graph G = (V, E), a subset S of the vertices is 

a clique if there is an edge between every pair 
of vertices in S
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Complement of a Graph

• Defn: G’=(V,E’) is the complement of 
G=(V,E) if (u,v) is in E’ iff (u,v) is not in E
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Construct the complement

IS <P Clique

• Lemma: S is Independent in G iff S is a 
Clique in the complement of G

• To reduce IS to Clique, we compute the 
complement of the graph.  The 
complement has a clique of size K iff the 
original graph has an independent set of 
size K
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Hamiltonian Circuit Problem

• Hamiltonian Circuit – a simple cycle 
including all the vertices of the graph

Thm: Hamiltonian Circuit is NP 
Complete

• Reduction from 3-SAT

Traveling Salesman Problem
• Given a complete graph with edge weights, 

determine the shortest tour that includes all of 
the vertices (visit each vertex exactly once, and 
get back to the starting point)
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Find the minimum cost tour

Thm:  HC <P TSP


