CSE 421
Algorithms
Richard Anderson
Lecture 24
Network Flow Applications

Today's topics

- Problem Reductions
- Undirected Flow to Flow
- Bipartite Matching
- Disjoint Path Problem
- Circulations
- Lowerbound constraints on flows
- Survey design

Problem Reduction

- Reduce Problem A to Problem B
- Convert an instance of Problem A to an instance Problem B
- Use a solution of Problem B to get a solution to Problem A
- Practical
- Use a program for Problem B to solve Problem A
- Theoretical
- Show that Problem B is at least as hard as Problem A

Problem Reduction Examples

- Reduce the problem of finding the Maximum of a set of integers to finding the Minimum of a set of integers

Find the maximum of: $8,-3,2,12,1,-6$

Undirected Network Flow

- Undirected graph with edge capacities
- Flow may go either direction along the edges (subject to the capacity constraints)

Construct an equivalent flow problem

Bipartite Matching

- A graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is bipartite if the vertices can be partitioned into disjoints sets X, Y
- A matching M is a subset of the edges that does not share any vertices
- Find a matching as large as possible

Application

- A collection of teachers
- A collection of courses
- And a graph showing which teachers can teach which courses

Converting Matching to Network Flow

Finding edge disjoint paths

Construct a maximum cardinality set of edge disjoint paths

Theorem

- The maximum number of edge disjoint paths equals the minimum number of edges whose removal separates s from t

Circulation Problem

- Directed graph with capacities, $\mathrm{c}(\mathrm{e})$ on the edges, and demands $\mathrm{d}(\mathrm{v})$ on vertices
- Find a flow function that satisfies the capacity constraints and the vertex demands
$-0<=\mathrm{f}(\mathrm{e})<=\mathrm{c}(\mathrm{e})$
$-\mathrm{fn}^{n}(\mathrm{v})-$ fout $(\mathrm{v})=\mathrm{d}(\mathrm{v})$
- Circulation facts:
- Feasibility problem
- d(v) < 0: source; d(v) > 0: sink
- Must have $\Sigma_{\mathrm{v}} \mathrm{d}(\mathrm{v})=0$ to be feasible

Find a circulation in the following graph

Reducing the circulation problem to Network flow

Formal reduction

- Add source node s, and sink node t
- For each node v , with $\mathrm{d}(\mathrm{v})<0$, add an edge from s to v with capacity $-\mathrm{d}(\mathrm{v})$
- For each node v, with $d(v)>0$, add an edge from v to t with capacity $d(v)$
- Find a maximum s-t flow. If this flow has size $\Sigma_{\mathrm{v}} \mathrm{cap}(\mathrm{s}, \mathrm{v})$ then the flow gives a circulation satisifying the demands

Circulations with lowerbounds on flows on edges

- Each edge has a lowerbound $\mathrm{I}(\mathrm{e})$.
- The flow f must satisfy $\mathrm{I}(\mathrm{e})<=\mathrm{f}(\mathrm{e})<=\mathrm{c}(\mathrm{e})$

Formal reduction

- $\mathrm{L}_{\text {in }}(\mathrm{v})$: sum of lowerbounds on incoming edges
- $\mathrm{L}_{\text {out }}(\mathrm{v})$: sum of lowerbounds on outgoing edges
- Create new demands d' and capacities c' on vertices and edges
$-d^{\prime}(v)=d(v)+I_{\text {out }}(v)-I_{\text {in }}(v)$
$-c^{\prime}(e)=c(e)-I(e)$

Removing lowerbounds on edges

- Lowerbounds can be shifted to the demands

Application

- Customized surveys
- Ask customers about products
- Only ask customers about products they use
- Limited number of questions you can ask each customer
- Need to ask a certain number of customers about each product
- Information available about which products each customer has used

Details

Circulation construction

- Customer $\mathrm{C}_{1}, \ldots, \mathrm{C}_{\mathrm{n}}$
- Products $\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{m}}$
- S_{i} is the set of products used by C_{i}
- Customer C_{i} can be asked between c_{i} and c_{i} questions
- Questions about product P_{j} must be asked on between p_{j} and p_{j}^{\prime} surveys

