CSE 421
Algorithms
Richard Anderson
Lecture 21
Shortest Paths

Shortest Path Problem

- Dijkstra's Single Source Shortest Paths Algorithm
- O(mlog n) time, positive cost edges
- General case - handling negative edges
- If there exists a negative cost cycle, the shortest path is not defined
- Bellman-Ford Algorithm
- O(mn) time for graphs with negative cost edges

Lemma

- If a graph has no negative cost cycles, then the shortest paths are simple paths
- Shortest paths have at most n-1 edges

Express as a recurrence

- $\mathrm{Opt}_{\mathrm{k}}(\mathrm{w})=\min _{\mathrm{x}}\left[\mathrm{Opt}_{\mathrm{k}-1}(\mathrm{x})+\mathrm{c}_{\mathrm{xw}}\right]$
- Opt ${ }_{0}(\mathrm{w})=0$ if $\mathrm{v}=\mathrm{w}$ and infinity otherwise

Algorithm, Version 1
foreach w
$\mathrm{M}[0, \mathrm{w}]=$ infinity;
$\mathrm{M}[0, \mathrm{v}]=0$;
for $\mathrm{i}=1$ to $\mathrm{n}-1$
foreach w
$M[i, w]=\min _{x}(M[i-1, x]+\operatorname{cost}[x, w])$;

Algorithm, Version 2

foreach w
$\mathrm{M}[0, \mathrm{w}]=$ infinity;
$\mathrm{M}[0, \mathrm{v}]=0$;
for $\mathrm{i}=1$ to $\mathrm{n}-1$
foreach w
$M[i, w]=\min \left(M[i-1, w], \min _{x}(M[i-1, x]+\operatorname{cost}[x, w])\right)$

Correctness Proof for Algorithm 3

- Key lemma - at the end of iteration i , for all $w, M[w]<=M[i, w]$;
- Reconstructing the path:
- Set $P[w]=x$, whenever $M[w]$ is updated from vertex x

Algorithm, Version 3

foreach w
$M[w]=$ infinity;
$\mathrm{M}[\mathrm{v}]=0$;
for $\mathrm{i}=1$ to $\mathrm{n}-1$
foreach w
$M[w]=\min \left(M[w], \min _{x}(M[x]+\operatorname{cost}[x, w])\right)$

If the pointer graph has a cycle, then the graph has a negative cost cycle

- If $P[w]=x$ then $M[w]>=M[x]+\operatorname{cost}(x, w)$
- Equal when w is updated
- $M[x]$ could be reduced after update
- Let $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \mathrm{v}_{\mathrm{k}}$ be a cycle in the pointer graph with $\left(\mathrm{v}_{\mathrm{k}}, \mathrm{v}_{1}\right)$ the last edge added
- Just before the update
- $M\left[v_{j}\right]>=M\left[v_{j+1}\right]+\operatorname{cost}\left(v_{j+1}, v_{j}\right)$ for $j<k$
- $M\left[v_{k}\right]>M\left[v_{1}\right]+\operatorname{cost}\left(v_{1}, v_{k}\right)$
- Adding everything up
- $0>\operatorname{cost}\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)+\operatorname{cost}\left(\mathrm{v}_{2}, \mathrm{v}_{3}\right)+\ldots+\operatorname{cost}\left(\mathrm{v}_{\mathrm{k}}, \mathrm{v}_{1}\right)$

Finding negative cost cycles
-What if you want to find negative cost cycles?

