CSE 421
Algorithms
Richard Anderson Lecture 20
Memory Efficient Longest Common Subsequence

Longest Common Subsequence

- $C=c_{1} \ldots c_{g}$ is a subsequence of $A=a_{1} \ldots a_{m}$ if C can be obtained by removing elements from A (but retaining order)
- LCS(A, B): A maximum length sequence that is a subsequence of both A and B

```
ocurranec attacggct
occurrence tacgacca
```


LCS Optimization

- $A=a_{1} a_{2} \ldots a_{m}$
- $B=b_{1} b_{2} \ldots b_{n}$
- Opt $[\mathrm{j}, \mathrm{k}]$ is the length of $\operatorname{LCS}\left(a_{1} a_{2} \ldots a_{j}, b_{1} b_{2} \ldots b_{k}\right)$

Optimization recurrence

If $a_{j}=b_{k}, \quad \operatorname{Opt}[j, k]=1+\operatorname{Opt}[j-1, k-1]$
If $\mathrm{a}_{\mathrm{j}}!=\mathrm{b}_{\mathrm{k}}, \operatorname{Opt}[\mathrm{j}, \mathrm{k}]=\max (\operatorname{Opt}[\mathrm{j}-1, \mathrm{k}], \operatorname{Opt}[\mathrm{j}, \mathrm{k}-1])$

Storing the path information

$\mathrm{A}[1 . . \mathrm{m}], \mathrm{B}[1 . . \mathrm{n}]$
for $i:=1$ to $m \quad$ Opt[i, 0] :=
for $\mathrm{j}:=1$ to $\mathrm{n} \quad \operatorname{Opt}[0, \mathrm{j}]:=0$;
Opt $[0,0]:=0$;
for $i:=1$ to m
 for $\mathrm{j}:=1$ to n
if $A[i]=B[j]\{\operatorname{Opt}[i, j]:=1+\operatorname{Opt}[i-1, j-1] ;$ Best $[i, j]:=\operatorname{Diag} ;\}$ else if Opt[i-1, j] >= Opt[i, j-1]
\{ Opt[i, j]:= Opt[i-1, j], Best[i,j] := Left; \}
else $\quad\{$ Opt[i, j] := Opt[i, j-1], Best[i,j] := Down; \}

Algorithm Performance

- $O(n m)$ time and $O(n m)$ space
- On current desktop machines
$-n, m<10,000$ is easy
$-n, m>1,000,000$ is prohibitive
- Space is more likely to be the bounding resource than time

Observations about the Algorithm

- The computation can be done in $\mathrm{O}(\mathrm{m}+\mathrm{n})$ space if we only need one column of the Opt values or Best Values
- The algorithm can be run from either end of the strings

Computing LCS in $\mathrm{O}(\mathrm{nm})$ time and $\mathrm{O}(\mathrm{n}+\mathrm{m})$ space

- Divide and conquer algorithm
- Recomputing values used to save space

Constrained LCS

- $\operatorname{LCS}_{\mathrm{i}, \mathrm{j}}(\mathrm{A}, \mathrm{B})$: The LCS such that
$-a_{1}, \ldots, a_{i}$ paired with elements of b_{1}, \ldots, b_{j}
$-a_{i+1}, \ldots a_{m}$ paired with elements of b_{j+1}, \ldots, b_{n}
- $\mathrm{LCS}_{4,3}($ abbacbb, cbbaa)

Divide and Conquer Algorithm

- Where does the best path cross the middle column?

- For a fixed i, and for each j, compute the LCS that has a_{i} matched with b_{j}

A = RRSSRTTRTS

 $\mathrm{B}=$ RTSRRSTSTCompute $\mathrm{LCS}_{5,0}(\mathrm{~A}, \mathrm{~B}), \mathrm{LCS}_{5,1}(\mathrm{~A}, \mathrm{~B}), \ldots, \mathrm{LCS}_{5,9}(\mathrm{~A}, \mathrm{~B})$

A = RRSSRTTRTS $\mathrm{B}=$ RTSRRSTST

Compute $\mathrm{LCS}_{5,0}(\mathrm{~A}, \mathrm{~B}), \mathrm{LCS}_{5,1}(\mathrm{~A}, \mathrm{~B}), \ldots, \mathrm{LCS}_{5,9}(\mathrm{~A}, \mathrm{~B})$

j	left	right
0	0	4
1	1	4
2	1	3
3	2	3
4	3	3
5	3	2
6	3	2
7	3	1
8	4	1
9	4	0

Divide and Conquer

- $A=a_{1}, \ldots, a_{m} \quad B=b_{1}, \ldots, b_{n}$
- Find j such that
$-\operatorname{LCS}\left(a_{1} \ldots a_{m / 2}, b_{1} \ldots b_{j}\right)$ and
$-\operatorname{LCS}\left(a_{m / 2+1} \ldots a_{m}, b_{j+1} \ldots b_{n}\right)$ yield optimal solution
- Recurse

Prove by induction that $\mathrm{T}(\mathrm{m}, \mathrm{n})<=2 \mathrm{cmn}$

Recurse

Computing the middle column

- From the left, compute $\operatorname{LCS}\left(\mathrm{a}_{1} \ldots \mathrm{a}_{\mathrm{m} / 2}, \mathrm{~b}_{1} \ldots \mathrm{~b}_{\mathrm{j}}\right)$
- From the right, compute $\operatorname{LCS}\left(a_{m / 2+1} \ldots a_{m}, b_{j+1} \ldots b_{n}\right)$
- Add values for corresponding j's

- Note - this is space efficient

Algorithm Analysis

- $T(m, n)=T(m / 2, j)+T(m / 2, n-j)+c n m$

Prove by induction that $\mathrm{T}(\mathrm{m}, \mathrm{n})<=2 \mathrm{cmn}$

Shortest Path Problem

- Dijkstra's Single Source Shortest Paths Algorithm
- O(mlog n) time, positive cost edges
- General case - handling negative edges
- If there exists a negative cost cycle, the shortest path is not defined
- Bellman-Ford Algorithm
- O(mn) time for graphs with negative cost edges

Shortest paths with a fixed number of edges

- Find the shortest path from v to w with exactly k edges

Express as a recurrence

- $\mathrm{Opt}_{\mathrm{k}}(\mathrm{w})=\min _{\mathrm{x}}\left[\mathrm{Opt}_{\mathrm{k}-1}(\mathrm{x})+\mathrm{c}_{\mathrm{xw}}\right]$
- Opt $t_{0}(w)=0$ if $\mathrm{v}=\mathrm{w}$ and infinity otherwise

Lemma

- If a graph has no negative cost cycles, then the shortest paths are simple paths
- Shortest paths have at most n-1 edges

Algorithm, Version 1

foreach w
$\mathrm{M}[0, \mathrm{w}]=$ infinity;
$\mathrm{M}[\mathrm{O}, \mathrm{v}]=0$;
for $\mathrm{i}=1$ to $\mathrm{n}-1$
foreach w
$M[i, w]=\min _{x}(M[i-1, x]+\operatorname{cost}[x, w]) ;$

