CSE 421
Algorithms
Richard Anderson
Lecture 17
Dynamic Programming

Optimal sub-solution property

Optimal solution with k segments extends an optimal solution of $k-1$ segments on a smaller problem

$$
\bigcirc \bigcirc \bigcirc \bigcirc
$$

\bigcirc

\bigcirc

$$
\bigcirc
$$

$$
\bigcirc
$$


```
Opt \(_{k}[j]\) : Minimum error approximating \(p_{1} \ldots p_{j}\) with \(k\) segments
Express \(\mathrm{Opt}_{k}[j]\) in terms of Opt \(_{k-1}[1], \ldots\), Opt \(_{k-1}[j]\)
\[
\text { Opt }_{k}[j]=\min _{i}\left\{\text { Opt }_{k-1}[i]+E_{i, j}\right\}
\]
    Opt}[\mp@code{j ] : Minimum error
approximating }\mp@subsup{p}{1}{}\ldots.\mp@subsup{p}{j}{}\mathrm{ with k segments
Opt
Opt}[\mp@code{j] = min
```


Optimal multi-segment interpolation

```
Compute Opt[ k, j] for 0 < k < j < n
    for j:= 1 to n
        Opt[ 1, j] = E E,j;
        for k:= 2 to n-1
            for j:= 2 to n
            t:= E 1,j
            fori:= 1 to j-1
                t=min (t,Opt[k-1,i] + E Ei,j)
            Opt[[k, j] = t
```


Determining the solution

- When Opt[k, j] is computed, record the value of i that minimized the sum
- Store this value in a auxiliary array
- Use to reconstruct solution

Penalty cost measure

- $\operatorname{Opt}[\mathrm{j}]=\min \left(\mathrm{E}_{1, \mathrm{j},}, \min _{\mathrm{i}}\left(\operatorname{Opt}[\mathrm{i}]+\mathrm{E}_{\mathrm{i}, \mathrm{j}}\right)\right)+\mathrm{P}$

Adding a variable for Weight

- Opt[$j, \mathrm{~K}$] the largest subset of $\left\{\mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{j}}\right\}$ that sums to at most K
- $\{2,4,7,10\}$
- Opt $[2,7]=$
- Opt[3, 7] =
- Opt[3,12] =
- Opt[4,12] =

Subset Sum Recurrence

- Opt[j, K] the largest subset of $\left\{\mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{j}}\right\}$ that sums to at most K

Subset Sum Code

Subset Sum Code	

Knapsack Problem

- Items have weights and values
- The problem is to maximize total value subject to a bound on weght
- Items $\left\{1_{1}, I_{2}, \ldots I_{n}\right\}$
- Weights $\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$
- Values $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$
- Bound K
- Find set S of indices to:
- Maximize $\sum_{\text {iss }} \mathrm{v}_{\mathrm{i}}$ such that $\sum_{\text {iss }} \mathrm{w}_{\mathrm{i}}<=\mathrm{K}$

Knapsack Grid

Opt $[\mathrm{j}, \mathrm{K}]=\max \left(\operatorname{Opt}[\mathrm{j}-1, \mathrm{~K}], \operatorname{Opt}\left[\mathrm{j}-1, \mathrm{~K}-\mathrm{w}_{\mathrm{j}}\right]+\mathrm{v}_{\mathrm{j}}\right)$

Weights $\{2,4,7,10\}$ Values: $\{3,5,9,16\}$

