CSE 421
Algorithms
Richard Anderson
Lecture 13
Divide and Conquer

Announcements

- HW 5 available
- Deadline Friday, Nov 3.
- Midterm
- Friday, Nov 3.
- Material from lecture/text through end of chapter 5
- 50 minutes, in class, closed book/notes, short answer, approximately five problems, problems easier than HW problems.

What you really need to know about recurrences

- Work per level changes geometrically with the level
- Geometrically increasing ($x>1$)
- The bottom level wins
- Geometrically decreasing ($x<1$)
- The top level wins
- Balanced (x=1)
- Equal contribution

$$
T(n)=a T(n / b)+n^{c}
$$

- Balanced: $a=b^{c}$
- Increasing: $a>b c$
- Decreasing: $\mathrm{a}<\mathrm{b}^{\mathrm{c}}$

Classify the following recurrences (Increasing, Decreasing, Balanced)

- $T(n)=n+5 T(n / 8)$
- $\mathrm{T}(\mathrm{n})=\mathrm{n}+9 \mathrm{~T}(\mathrm{n} / 8)$
- $T(n)=n^{2}+4 T(n / 2)$
- $T(n)=n^{3}+7 T(n / 2)$
- $T(n)=n^{1 / 2}+3 T(n / 4)$

Divide and Conquer Algorithms

- Split into sub problems
- Recursively solve the problem
- Combine solutions
- Make progress in the split and combine stages
- Quicksort - progress made at the split step
- Mergesort - progress made at the combine step

Closest Pair Problem

- Given a set of points find the pair of points p, q that minimizes $\operatorname{dist}(\mathrm{p}, \mathrm{q})$

Divide and conquer

- If we solve the problem on two subsets, does it help? (Separate by median x coordinate)

Combining Solutions

- Suppose the minimum separation from the sub problems is δ
- In looking for cross set closest pairs, we only need to consider points with δ of the boundary
- How many cross border interactions do we need to test?

Details

- Preprocessing: sort points by y
- Merge step
- Select points in boundary zone
- For each point in the boundary
- Find highest point on the other side that is at most δ above
- Find lowest point on the other side that is at most δ below
- Compare with the points in this interval (there are at most 6)

Algorithm run time

- After preprocessing:
$-T(n)=c n+2 T(n / 2)$

Inversion Problem

- Let $a_{1}, \ldots a_{n}$ be a permutation of $1 \ldots n$
- $\left(a_{i}, a_{j}\right)$ is an inversion if $i<j$ and $a_{i}>a_{j}$
$4,6,1,7,3,2,5$
- Problem: given a permutation, count the number of inversions
- This can be done easily in $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time

Application

- Counting inversions can be use to measure how close ranked preferences are
- People rank 20 movies, based on their rankings you cluster people who like that same type of movie
- Can we do better?

Counting Inversions

1	12	4	1	7	2	3	15	9	5	16	8	6	13	10	14

Count inversions on lower half
Count inversions on upper half
Count the inversions between the halves

Count the Inversions

Problem - how do we count inversions between sub problems in $O(n)$ time?

- Solution - Count inversions while merging

| 1 | 2 | 3 | 4 | 7 | 11 | 12 | 15 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 5 | 5 | 6 | 8 | 9 | 10 | 13 | 14 | 16 |

Standard merge algorithms - add to inversion count when an element is moved from the upper array to the solution

Use the merge algorithm to count inversions

1	4	11	12

| 5 | 8 | 9 | 16 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

\qquad

