

Recurrence Examples

- $T(n)=2 T(n / 2)+c n$
$-O(n \log n)$
- $T(n)=T(n / 2)+c n$
- O(n)
- More useful facts:
$-\log _{k} n=\log _{2} n / \log _{2} k$
$-k^{\log n}=n^{\log k}$

Recursive Matrix Multiplication

Multiply 2×2 Matrices:

$\left|\begin{array}{ll}\mathrm{r} & \mathrm{s}\end{array}\right|=\left|\begin{array}{lll}\mathrm{a} & \mathrm{b} \mid & \mid \mathrm{e} \\ \mathrm{g}\end{array}\right|$ $\left.|t \quad u|=\left|\begin{array}{ll}\mathrm{c} & \mathrm{d} \mid\end{array}\right| \mathrm{f} \quad \mathrm{h} \right\rvert\,$

A $N \times N$ matrix can be viewed as a 2×2 matrix with entries that are ($\mathrm{N} / 2$) $\times(\mathrm{N} / 2)$ matrices.

The recursive matrix multiplication algorithm recursively multiplies the (N/2) $\times(\mathrm{N} / 2)$ matrices and combines them using the equations for multiplying 2×2 matrices

Divide and Conquer

\square

$$
T(n)=a T(n / b)+f(n)
$$

Recursive Matrix Multiplication

- How many recursive calls are made at each level?
- How much work in combining the results?
- What is the recurrence?

What is the run time for the recursive Matrix Multiplication Algorithm?

- Recurrence:

$$
T(n)=4 T(n / 2)+c n
$$

$T(n)=4 T(n / 2)+c n$

| $(n)=2 T(n / 2)+n^{2}$ |
| :---: | :---: |
| |
| |
| |

$$
T(n)=2 T(n / 2)+n^{1 / 2}
$$

Recurrences

- Three basic behaviors
- Dominated by initial case
- Dominated by base case
- All cases equal - we care about the depth

Solve by unrolling
$T(n)=n+5 T(n / 2)$

What you really need to know about recurrences

- Work per level changes geometrically with the level
- Geometrically increasing ($x>1$)
- The bottom level wins
- Geometrically decreasing ($\mathrm{x}<1$)
- The top level wins
- Balanced ($x=1$)
- Equal contribution

Classify the following recurrences (Increasing, Decreasing, Balanced)

- $T(n)=n+5 T(n / 8)$
- $\mathrm{T}(\mathrm{n})=\mathrm{n}+9 \mathrm{~T}(\mathrm{n} / 8)$
- $T(n)=n^{2}+4 T(n / 2)$
- $\mathrm{T}(\mathrm{n})=\mathrm{n}^{3}+7 \mathrm{~T}(\mathrm{n} / 2)$
- $T(n)=n^{1 / 2}+3 T(n / 4)$

Recurrence for Strassen's
 Algorithms

- $T(n)=7 T(n / 2)+c n^{2}$
- What is the runtime?

BFPRT Recurrence

- $T(n)<=T(3 n / 4)+T(n / 5)+20 n$

