CSE 421
Algorithms
Richard Anderson
Lecture 11
Recurrences
$T(n)<=2 T(n / 2)+c n ; T(2)<=c ;$

Divide and Conquer

- Recurrences, Sections 5.1 and 5.2
- Algorithms
- Counting Inversions (5.3)
- Closest Pair (5.4)
- Multiplication (5.5)
-FFT (5.6)
,

Recurrence Analysis

- Solution methods
- Unrolling recurrence
- Guess and verify
- Plugging in to a "Master Theorem"

Substitution

Prove $T(n)<=c n \log _{2} n$ for $n>=2$
Induction:
Base Case:

Induction Hypothesis:

A better mergesort (?)

- Divide into 3 subarrays and recursively sort
- Apply 3-way merge
Unroll recurrence for

$$
T(n)=3 T(n / 3)+d n
$$

$$
T(n)=a T(n / b)+f(n)
$$

$$
T(n)=T(n / 2)+c n
$$

Where does this recurrence arise?

$$
T(n)=4 T(n / 2)+c n
$$

$$
T(n)=2 T(n / 2)+n^{1 / 2}
$$

Recurrences

- Three basic behaviors
- Dominated by initial case
- Dominated by base case
- All cases equal - we care about the depth

