CSE 421
Algorithms
Richard Anderson
Lecture 10
Minimum Spanning Trees

Minimum Spanning Tree

Why do the greedy algorithms work?

- For simplicity, assume all edge costs are distinct
- [Prim] Extend a tree by including the cheapest out going edge
- [Kruskal] Add the cheapest edge that joins disjoint components
- [ReverseDelete] Delete the most expensive edge that does not disconnect the graph

Greedy Algorithms for Minimum Spanning Tree

Edge inclusion lemma

- Let S be a subset of V , and suppose $\mathrm{e}=$ (u, v) is the minimum cost edge of E, with u in S and v in V-S
- e is in every minimum spanning tree of G - Or equivalently, if e is not in T, then T is not a minimum spanning tree

e is the minimum cost edge
between S and V -S

Proof

- Suppose T is a spanning tree that does not contain e
- Add e to T, this creates a cycle
- The cycle must have some edge $\mathrm{e}_{1}=\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right)$ with u_{1} in S and v_{1} in V-S

- $\mathrm{T}_{1}=\mathrm{T}-\left\{\mathrm{e}_{1}\right\}+\{\mathrm{e}\}$ is a spanning tree with lower cost
- Hence, T is not a minimum spanning tree

Optimality Proofs

- Prim's Algorithm computes a MST
- Kruskal's Algorithm computes a MST
- Show that when an edge is added to the MST by Prim or Kruskal, the edge is the minimum cost edge between S and V -S for some set S .

Prove Prim's algorithm computes

 an MST- Show an edge e is in the MST when it is added to T

Kruskal's Algorithm

Let $\mathrm{C}=\left\{\left\{\mathrm{v}_{1}\right\},\left\{\mathrm{v}_{2}\right\}, \ldots,\left\{\mathrm{v}_{n}\right\}\right\} ; \mathrm{T}=\{ \}$
while $|\mathrm{C}|>1$
Let $e=(u, v)$ with u in C_{i} and v in C_{j} be the minimum cost edge joining distinct sets in C
Replace C_{i} and C_{j} by $C_{i} \cup C_{j}$
Add e to T

Prove Kruskal's algorithm computes an MST

- Show an edge e is in the MST when it is added to T

Reverse-Delete Algorithm

- Lemma: The most expensive edge on a cycle is never in a minimum spanning tree

Dealing with the assumption of no equal weight edges

- Force the edge weights to be distinct
- Add small quantities to the weights
- Give a tie breaking rule for equal weight edges

Application: Clustering

- Given a collection of points in an rdimensional space, and an integer K , divide the points into K sets that are closest together

Distance clustering

- Divide the data set into K subsets to maximize the distance between any pair of sets
$-\operatorname{dist}\left(S_{1}, S_{2}\right)=\min \left\{\operatorname{dist}(x, y) \mid x\right.$ in S_{1}, y in $\left.S_{2}\right\}$

○

Divide into 3 clusters

$\bigcirc \bigcirc$
○
\bigcirc
○

Divide into 4 clusters

Distance Clustering Algorithm

```
Let C={{\mp@subsup{v}{1}{}},{\mp@subsup{v}{2}{}},\ldots.,{\mp@subsup{v}{n}{\prime}};
```

while $|\mathrm{C}|>K$

Let $e=(u, v)$ with u in C_{i} and v in C_{i} be the minimum cost edge joining distinct sets in C
Replace C_{i} and C_{j} by $\mathrm{C}_{\mathrm{i}} \cup \mathrm{C}_{\mathrm{j}}$

