CSE 421
Algorithms
Richard Anderson
Lecture 9
Minimum Spanning Trees
http://www.cs.utexas.edu/users/EWD/

- Edsger Wybe Dijkstra was one of the most influential members of computing science's founding generation. Among the domains in which his scientific contributions are fundamental are
- algorithm design
- programming languages
- program design
- operating systems
- distributed processing
- formal specification and verification
- design of mathematical arguments

Shortest Paths

- Negative Cost Edges
- Dijkstra's algorithm assumes positive cost edges
- For some applications, negative cost edges make sense
- Shortest path not well defined if a graph has a negative cost cycle

Negative Cost Edge Preview

- Topological Sort can be used for solving the shortest path problem in directed acyclic graphs
- Bellman-Ford algorithm finds shortest paths in a graph with negative cost edges (or reports the existence of a negative cost cycle).

Dijkstra's Algorithm Implementation and Runtime

```
    S={}; d[s]=0; d[v] = infinity for v ! = s
    While S!= V
        Choose v in V-S with minimum d[v]
            Add v to S
            For each w in the neighborhood of v
                d[w] = min (d[w], d[v] + c(v,w))
ENEAP OPERATIONS
Edge costs are assumed to be non-negative
```


Bottleneck Shortest Path

- Define the bottleneck distance for a path to be the maximum cost edge along the path

Minimum Spanning Tree

- Introduce Problem
- Demonstrate three different greedy algorithms
- Provide proofs that the algorithms work

Minimum Spanning Tree

Greedy Algorithms for Minimum Spanning Tree

- Extend a tree by including the cheapest out going edge
- Add the cheapest edge that joins disjoint components
- Delete the most expensive edge that
 does not disconnect the graph

Greedy Algorithm 1
 Prim's Algorithm

- Extend a tree by including the cheapest out going edge

Greedy Algorithm 3

 Reverse-Delete Algorithm- Delete the most expensive edge that does not disconnect the graph

[^0]
Greedy Algorithm 2 Kruskal's Algorithm

- Add the cheapest edge that joins disjoint components

Construct the MST with Kruskal's algorithm
Label the edges in order of insertion

Why do the greedy algorithms work?

- For simplicity, assume all edge costs are distinct
- Let S be a subset of V, and suppose $e=$ (u, v) is the minimum cost edge of E, with u in S and v in V-S
- e is in every minimum spanning tree
-

Optimality Proofs

- Prim's Algorithm computes a MST
- Kruskal's Algorithm computes a MST

Reverse-Delete Algorithm

- Lemma: The most expensive edge on a cycle is never in a minimum spanning tree

Dijkstra's Algorithm for Minimum Spanning Trees

$S=\{ \} ; \quad d[s]=0 ; \quad d[v]=$ infinity for $v!=s$ While S != V

Choose v in V - S with minimum $\mathrm{d}[\mathrm{v}]$
Add v to S
For each w in the neighborhood of v
$d[w]=\min (d[w], c(v, w))$

[^0]: Proof

 - Suppose T is a spanning tree that does not
 contain - Add e to T , this creates a cycle
 - The cycle must have some edge $\mathrm{e}_{1}=\left(u_{1}, v_{1}\right)$
 with u_{1} in S and v_{1} in V-S
 - $\mathrm{T}_{1}=\mathrm{T}-\left\{\mathrm{e}_{1}\right\}+\{$ \{ $\}$ is a spanning tree with lower
 cost
 Proof
 - Suppose T is a spanning tree that does not
 contain e, this creates a cycle
 - Add e to T, $\begin{aligned} & \text { The cycle must have some edge } e_{1}=\left(u_{1}, v_{1}\right) \\ & \text { with } u_{1} \text { in } S \text { and } v_{1} \text { in } V \text { - } \mathrm{S}\end{aligned}$
 - $T_{1}=T-\left\{\mathrm{e}_{1}\right\}+\{\mathrm{e}\}$ is a spanning tree with lower
 cost
 Proof
 - Suppose T is a spanning tree that does not
 contain e, this creates a cycle
 - Add e to T, $\begin{aligned} & \text { The cycle must have some edge } e_{1}=\left(u_{1}, v_{1}\right) \\ & \text { with } u_{1} \text { in } S \text { and } v_{1} \text { in } V \text { - } \mathrm{S}\end{aligned}$
 - $T_{1}=T-\left\{\mathrm{e}_{1}\right\}+\{\mathrm{e}\}$ is a spanning tree with lower
 cost
 Proof
 - Suppose T is a spanning tree that does not
 contain e, this creates a cycle
 - Add e to T, $\begin{aligned} & \text { The cycle must have some edge } e_{1}=\left(u_{1}, v_{1}\right) \\ & \text { with } u_{1} \text { in } S \text { and } v_{1} \text { in } V \text { - } \mathrm{S}\end{aligned}$
 - $T_{1}=T-\left\{\mathrm{e}_{1}\right\}+\{\mathrm{e}\}$ is a spanning tree with lower
 cost
 Proof
 - Suppose T is a spanning tree that does not
 contain e, this creates a cycle
 - Add e to T, $\begin{aligned} & \text { The cycle must have some edge } e_{1}=\left(u_{1}, v_{1}\right) \\ & \text { with } u_{1} \text { in } S \text { and } v_{1} \text { in } V \text { - } \mathrm{S}\end{aligned}$
 - $T_{1}=T-\left\{\mathrm{e}_{1}\right\}+\{\mathrm{e}\}$ is a spanning tree with lower
 cost
 Proof
 - Suppose T is a spanning tree that does not
 contain e, this creates a cycle
 - Add e to T, $\begin{aligned} & \text { The cycle must have some edge } e_{1}=\left(u_{1}, v_{1}\right) \\ & \text { with } u_{1} \text { in } S \text { and } v_{1} \text { in } V \text { - } \mathrm{S}\end{aligned}$
 - $T_{1}=T-\left\{\mathrm{e}_{1}\right\}+\{\mathrm{e}\}$ is a spanning tree with lower
 cost
 Proof
 - Suppose T is a spanning tree that does not
 contain e, this creates a cycle
 - Add e to T, $\begin{aligned} & \text { The cycle must have some edge } e_{1}=\left(u_{1}, v_{1}\right) \\ & \text { with } u_{1} \text { in } S \text { and } v_{1} \text { in } V \text { - } \mathrm{S}\end{aligned}$
 - $T_{1}=T-\left\{\mathrm{e}_{1}\right\}+\{\mathrm{e}\}$ is a spanning tree with lower
 cost
 Proof
 - Suppose T is a spanning tree that does not
 contain e, this creates a cycle
 - Add e to T, $\begin{aligned} & \text { The cycle must have some edge } e_{1}=\left(u_{1}, v_{1}\right) \\ & \text { with } u_{1} \text { in } S \text { and } v_{1} \text { in } V \text { - } \mathrm{S}\end{aligned}$
 - $T_{1}=T-\left\{\mathrm{e}_{1}\right\}+\{\mathrm{e}\}$ is a spanning tree with lower
 cost
 - Hence, T is not a minimum spanning tree

