CSE 421
Algorithms
Richard Anderson
Lecture 8
Optimal Caching
Dijkstra's algorithm

Optimal Caching

- Caching problem:
- Maintain collection of items in local memory
- Minimize number of items fetched

Optimal Caching

- If you know the sequence of requests, what is the optimal replacement pattern?
- Note - it is rare to know what the requests are in advance - but we still might want to do this:
- Some specific applications, the sequence is known
- Competitive analysis, compare performance on an online algorithm with an optimal offline algorithm

Today's Lecture

- Optimal Caching (Section 4.3)
- Dijkstra's Algorithm (Section 4.4)

Caching example

$A, B, C, D, A, E, B, A, D, A, C, B, D, A$

Farthest in the future algorithm

- Discard element used farthest in the future
\square $A, B, C, A, C, D, C, B, C, A, D$

Correctness Proof

- Sketch
- Start with Optimal Solution O
- Convert to Farthest in the Future Solution F-F
- Look at the first place where they differ
- Convert O to evict F-F element
- There are some technicalities here to ensure the caches have the same configuration ...

Assume all edges have non-negative cost

Dijkstra's Algorithm

$$
\begin{aligned}
& \mathrm{S}=\{ \} ; \mathrm{d}[\mathrm{~s}]=0 ; \quad \mathrm{d}[\mathrm{v}]=\text { infinity for } \mathrm{v}!=\mathrm{s} \\
& \mathrm{While} \mathrm{~S}!=\mathrm{v} \\
& \mathrm{Choose} \mathrm{v} \text { in } \mathrm{V}-\mathrm{S} \text { with minimum } \mathrm{d}[\mathrm{v}] \\
& \text { Add } \mathrm{v} \text { to } \mathrm{S} \\
& \text { For each } \mathrm{w} \text { in the neighborhood of } \mathrm{v} \\
& \mathrm{~d}[\mathrm{w}]=\min (\mathrm{d}[\mathrm{w}], \mathrm{d}[\mathrm{v}]+\mathrm{c}(\mathrm{v}, \mathrm{w}))
\end{aligned}
$$

Single Source Shortest Path Problem

- Given a graph and a start vertex s - Determine distance of every vertex from s - Identify shortest paths to each vertex
- Express concisely as a "shortest paths tree"
- Each vertex has a pointer to a predecessor on shortest path

Warmup

- If P is a shortest path from s to v, and if t is on the path P, the segment from s to t is a shortest path between s and t
- WHY? ${ }^{\text {® }}$

Dijkstra's Algorithm as a greedy algorithm

- Elements committed to the solution by order of minimum distance

Correctness Proof

- Elements in S have the correct label
- Key to proof: when v is added to S, it has the correct distance label.

Proof

- Let P_{v} be the path of length $d[v]$, with an edge (u,v)
- Let P be some other path to v. Suppose P first leaves S on the edge (x, y)
$-P=P_{s x}+c(x, y)+P_{y v}$
$-\operatorname{Len}\left(P_{s x}\right)+c(x, y)>=d[y]$
$-\operatorname{Len}\left(P_{y v}\right)>=0$
$-\operatorname{Len}(P)>=d[y]+0>=d[v]$
(s)
(1) (v)

Negative Cost Edges

- Draw a small example a negative cost edge and show that Dijkstra's algorithm fails on this example

Bottleneck Shortest Path

- Define the bottleneck distance for a path to be the maximum cost edge along the path

Compute the bottleneck shortest paths

©
©
(s)
(b)
(a)
(+

How do you adapt Dijkstra's algorithm to handle bottleneck distances

- Does the correctness proof still apply?

