CSE 421
Algorithms
Richard Anderson
Lecture 7
Greedy Algorithms: Homework Scheduling and Optimal Caching

Greedy Algorithms

- Solve problems with the simplest possible algorithm
- The hard part: showing that something simple actually works
- Today's problems (Sections 4.2, 4.3)
- Homework Scheduling
- Optimal Caching

Homework Scheduling

- Tasks to perform
- Deadlines on the tasks
- Freedom to schedule tasks in any order

Scheduling tasks

- Each task has a length t_{i} and a deadline d_{i}
- All tasks are available at the start
- One task may be worked on at a time
- All tasks must be completed
- Goal: minimize maximum lateness
- Lateness $=f_{i}-d_{i}$ if $f_{i}>=d_{i}$

Determine the minimum lateness

Greedy Algorithm

- Earliest deadline first
- Order jobs by deadline
- This algorithm is optimal

Analysis

- Suppose the jobs are ordered by deadlines, $\mathrm{d}_{1}<=\mathrm{d}_{2}<=\ldots<=\mathrm{d}_{\mathrm{n}}$
- A schedule has an inversion if job j is scheduled before i where j > i
- The schedule A computed by the greedy algorithm has no inversions.
- Let O be the optimal schedule, we want to show that A has the same maximum lateness as O

Lemma

- If there is an inversion i, j, there is a pair of adjacent jobs i ', j ' which form an inversion

Interchange argument

- Suppose there is a pair of jobs i and j, with $\mathrm{i}<\mathrm{j}, \mathrm{d}_{\mathrm{i}}<=\mathrm{d}_{\mathrm{j}}$, and j scheduled immediately before i. Interchanging i and j does not increase the maximum lateness.

Real Proof

- There is an optimal schedule with no inversions and no idle time.
- Let O be an optimal schedule k inversions, we construct a new optimal schedule with k-1 inversions
- Repeat until we have an optimal schedule with 0 inversions
- This is the solution found by the earliest deadline first algorithm

Result

- Earliest Deadline First algorithm constructs a schedule that minimizes the maximum lateness

Extensions

- What if the objective is to minimize the sum of the lateness?
- EDF does not seem to work
- If the tasks have release times and deadlines, and are non-preemptable, the problem is NP-complete
- What about the case with release times and deadlines where tasks are preemptable?

Optimal Caching

- Caching problem:
- Maintain collection of items in local memory
- Minimize number of items fetched

Caching example

Optimal Caching

- If you know the sequence of requests, what is the optimal replacement pattern?
- Note - it is rare to know what the requests are in advance - but we still might want to do this:
- Some specific applications, the sequence is known
- Competitive analysis, compare performance on an online algorithm with an optimal offline algorithm

Farthest in the future algorithm

- Discard element used farthest in the future
\square $A, B, C, A, C, D, C, B, C, A, D$

Correctness Proof

- Sketch
- Start with Optimal Solution O
- Convert to Farthest in the Future Solution F-F
- Look at the first place where they differ
- Convert O to evict F-F element
- There are some technicalities here to ensure the caches have the same configuration ...

