CSE 421
Algorithms
Richard Anderson
Lecture 7
Greedy Algorithms

Greedy Algorithms

- Solve problems with the simplest possible algorithm
- The hard part: showing that something simple actually works
- Pseudo-definition
- An algorithm is Greedy if it builds its solution by adding elements one at a time using a simple rule

Scheduling Theory

- Tasks
- Processing requirements, release times, deadlines
- Processors
- Precedence constraints
- Objective function
- Jobs scheduled, lateness, total execution time

Interval Scheduling

- Tasks occur at fixed times
- Single processor
- Maximize number of tasks completed

- Tasks $\{1,2, \ldots$. N$\}$
- Start and finish times, $s(i), f(i)$

Greedy Algorithm for Scheduling

```
    Let T be the set of tasks, construct a set of independent tasks I,
A is the rule determining the greedy algorithm
    I= {}
    While (T is not empty)
        Select a task t from T by a rule A
        Add t to I
        Remove t and all tasks incompatible with t from T
```

A is the rule determining the greedy algorithm

I= \{\}
While (T is not empty)

Remove t and all tasks incompatible with t from T

Simulate the greedy algorithm for each of these heuristics
Schedule earliest starting task

Schedule shortest available task

Schedule task with fewest conflicting tasks

Theorem: Earliest Finish Algorithm is Optimal

- Key idea: Earliest Finish Algorithm stays ahead
- Let $\mathrm{A}=\left\{\mathrm{i}_{1}, \ldots, \mathrm{i}_{k}\right\}$ be the set of tasks found by EFA in increasing order of finish times
- Let $B=\left\{j_{1}, \ldots, j_{m}\right\}$ be the set of tasks found by a different algorithm in increasing order of finish times
- Show that for $\mathrm{r}<=\min (\mathrm{k}, \mathrm{m}), \mathrm{f}\left(\mathrm{i}_{\mathrm{r}}\right)<=\mathrm{f}\left(\mathrm{j}_{\mathrm{r}}\right)$

Greedy solution based on earliest finishing time
Example 1

Example 3

Stay ahead lemma

- A always stays ahead of $B, f\left(i_{r}\right)<=f\left(j_{r}\right)$
- Induction argument
$\left.-f\left(\mathrm{i}_{1}\right)<=\mathrm{f} \mathrm{j}_{1}\right)$
- If $f\left(\mathrm{i}_{-1}\right)<=\mathrm{f}\left(\mathrm{j}_{-1}\right)$ then $\mathrm{f}\left(\mathrm{i}_{\mathrm{r}}\right)<=\mathrm{f}\left(\mathrm{j}_{\mathrm{r}}\right)$

Scheduling all intervals

- Minimize number of processors to schedule all intervals

Prove that you cannot schedule this set of intervals with two processors

Algorithm

- Sort by start times
- Suppose maximum depth is d, create d slots
- Schedule items in increasing order, assign each item to an open slot
- Correctness proof: When we reach an item, we always have an open slot

Scheduling tasks

- Each task has a length t_{i} and a deadline d_{i}
- All tasks are available at the start
- One task may be worked on at a time
- All tasks must be completed
- Goal minimize maximum lateness
- Lateness $=f_{i}-d_{i}$ if $f_{i}>=d_{i}$

