CSE 421
Algorithms
Richard Anderson
Lecture 5
Graph Theory

Theorem: A graph is bipartite if and only if it has no odd cycles

Lemma 2

- If a BFS tree has an intra-level edge, then the graph has an odd length cycle

Bipartite

- A graph is bipartite if its vertices can be partitioned into two sets V_{1} and V_{2} such that all edges go between V_{1} and V_{2}
- A graph is bipartite if it can be two colored

Lemma 3

- If a graph has no odd length cycles, then it is bipartite

Connected Components

- Undirected Graphs

Computing Connected

Components in $\mathrm{O}(\mathrm{n}+\mathrm{m})$ time

- A search algorithm from a vertex v can find all vertices in v's component
- While there is an unvisited vertex v, search from v to find a new component

Directed Graphs

- A Strongly Connected Component is a subset of the vertices with paths between every pair of vertices.

Identify the Strongly Connected

Components

$0 \quad \bigcirc$

Topological Sort

- Given a set of tasks with precedence constraints, find a linear order of the tasks

Find a topological order for the following graph

If a graph has a cycle, there is no topological sort

- Consider the first vertex on the cycle in the topological sort
- It must have an incoming edge

Lemma: If a graph is acyclic, it has
a vertex with in degree 0

- Proof:
- Pick a vertex v_{1}, if it has in-degree 0 then done
- If not, let $\left(v_{2}, v_{1}\right)$ be an edge, if v_{2} has indegree 0 then done
- If not, let $\left(\mathrm{v}_{3}, \mathrm{v}_{2}\right)$ be an edge . . .
- If this process continues for more than n steps, we have a repeated vertex, so we have a cycle

Topological Sort Algorithm

While there exists a vertex v with in-degree 0
Output vertex v
Delete the vertex v and all out going edges

Details for $\mathrm{O}(\mathrm{n}+\mathrm{m})$ implementation

- Maintain a list of vertices of in-degree 0
- Each vertex keeps track of its in-degree
- Update in-degrees and list when edges are removed
- m edge removals at $O(1)$ cost each

