CSE 421
Algorithms
Richard Anderson
Lecture 4

Today

- Finish discussion of asymptotics
$-\mathrm{O}, \Omega, \Theta$
- Graph theory terminology
- Basic graph algorithms

Order the following functions in increasing order by their growth rate
a) $n \log ^{4} n$
b) $2 n^{2}+10 n$
c) $2^{n / 100}$
d) $1000 n+\log ^{8} n$
e) n^{100}
f) 3^{n}
g) $1000 \log ^{10} \mathrm{n}$
h) $n^{1 / 2}$

Ordering growth rates

- For $b>0$ and $x>0$
$-\log ^{b} n$ is $O\left(n^{x}\right)$
- For $r>1$ and $d>0$
$-\mathrm{n}^{\mathrm{d}}$ is $\mathrm{O}\left(\mathrm{r}^{\mathrm{n}}\right)$

Lower bounds

- $T(n)$ is $\Omega(f(n))$
$-T(n)$ is at least a constant multiple of $f(n)$
- There exists an n_{0}, and $\varepsilon>0$ such that $T(n)>\varepsilon f(n)$ for all $n>n_{0}$
- Warning: definitions of Ω vary
- $T(n)$ is $\Theta(f(n))$ if $T(n)$ is $O(f(n))$ and $T(n)$ is $\Omega(f(n))$

True or False

- $n \log n$ is $O\left(n^{2}\right)$
- n^{3} is $\mathrm{O}\left(4 n^{3}+2 n+n\right)$
- n^{-1} is $\mathrm{O}\left(\mathrm{n}^{-2}\right)$
- n^{-1} is $\Omega\left(\mathrm{n}^{-2}\right)$
- $f(n)=n^{2}$ if n is even, 0 if n is odd $f(n)$ is $\Omega\left(n^{2}\right)$

Graph Theory

- $G=(V, E)$
- V - vertices
- E-edges
- Undirected graphs
- Edges sets of two vertices $\{u, v\}$
- Directed graphs
- Edges ordered pairs (u, v)
- Many other flavors
- Edge / vertices weights
- Parallel edges
- Self loops

Definitions

- Path: $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{k}}$, with $\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}+1}\right)$ in E
- Simple Path
- Cycle
- Simple Cycle
- Distance
- Connectivity
- Undirected
- Directed (strong connectivity)
- Trees
- Rooted
- Unrooted

Graph search

- Find a path from s to t

$$
S=\{s\}
$$

While there exists (u, v) in E with u in S and v not in S
$\operatorname{Pred}[v]=u$
Add v to S
if $(v=t)$ then path found

Breadth first search

- Explore vertices in layers
- s in layer 1
- Neighbors of s in layer 2
- Neighbors of layer 2 in layer 3 ...

Key observation

- All edges go between vertices on the same layer or adjacent layers

Bipartite

- A graph V is bipartite if V can be partitioned into $\mathrm{V}_{1}, \mathrm{~V}_{2}$ such that all edges go between V_{1} and V_{2}
- A graph is bipartite if it can be two colored

Testing Bipartiteness

- If a graph contains an odd cycle, it is not bipartite

Algorithm

- Run BFS
- Color odd layers red, even layers blue
- If no edges between the same layer, the graph is bipartite
- If edge between two vertices of the same layer, then there is an odd cycle, and the graph is not bipartite

