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CSE 421
Algorithms

Richard Anderson
Lecture 4

Announcements

• Homework 2, Due October 11, 1:30 pm.
• Reading

– Chapter 2.1, 2.2
– Chapter 3 (Mostly review)
– Start on Chapter 4

Today

• Finish discussion of asymptotics
– O, Ω, Θ

• Graph theory terminology
• Basic graph algorithms

Formalizing growth rates

• T(n) is O(f(n))               [T : Z+ R+]
– If sufficiently large n, T(n) is bounded by a 

constant multiple of f(n)
– Exist c, n0, such that for n > n0, T(n) < c f(n)

• T(n) is O(f(n)) will be written as:              
T(n) = O(f(n))
– Be careful with this notation

Order the following functions in 
increasing order by their growth rate
a) n log4n
b) 2n2 + 10n
c) 2n/100

d) 1000n + log8 n
e) n100

f) 3n

g) 1000 log10n
h) n1/2

Ordering growth rates

• For b > 0 and x > 0
– logbn is O(nx)

• For r > 1 and d > 0
– nd is O(rn)
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Lower bounds

• T(n) is Ω(f(n))
– T(n) is at least a constant multiple of f(n)
– There exists an n0, and ε > 0 such that       

T(n) > εf(n) for all n > n0

• Warning: definitions of Ω vary

• T(n) is Θ(f(n)) if T(n) is O(f(n)) and         
T(n) is Ω(f(n))

True or False
• n log n is O(n2)

• n3 is O(4n3 + 2n + n)

• n-1 is O(n-2)

• n-1 is Ω(n-2)

• f(n) = n2 if n is even, 0 if n is odd   
f(n) is Ω(n2)

Useful Theorems

• If lim (f(n) / g(n)) = c for c > 0 then           
f(n) = Θ(g(n))

• If f(n) is O(g(n)) and g(n) is O(h(n)) then     
f(n) is O(h(n))

• If f(n) is O(h(n)) and g(n) is O(h(n)) then 
f(n) + g(n) is O(h(n))

Graph Theory
• G = (V, E)

– V – vertices
– E – edges 

• Undirected graphs
– Edges sets of two vertices {u, v}

• Directed graphs
– Edges ordered pairs (u, v)

• Many other flavors
– Edge / vertices weights
– Parallel edges
– Self loops

Definitions
• Path:  v1, v2, …, vk, with (vi, vi+1) in E

– Simple Path
– Cycle
– Simple Cycle

• Distance
• Connectivity

– Undirected
– Directed (strong connectivity)

• Trees
– Rooted
– Unrooted

Graph search

• Find a path from s to t

S = {s}

While there exists (u, v) in E with u in S and v not in S

Pred[v] = u

Add v to S

if (v = t) then path found
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Breadth first search

• Explore vertices in layers
– s in layer 1
– Neighbors of s in layer 2
– Neighbors of layer 2 in layer 3 . . .

s

Key observation

• All edges go between vertices on the 
same layer or adjacent layers

2

8

3

7654

1

Bipartite

• A graph V is bipartite if V can be 
partitioned into V1, V2 such that all edges 
go between V1 and V2

• A graph is bipartite if it can be two colored

Two color this graph

Testing Bipartiteness

• If a graph contains an odd cycle, it is not 
bipartite

Algorithm

• Run BFS
• Color odd layers red, even layers blue
• If no edges between the same layer, the 

graph is bipartite
• If edge between two vertices of the same 

layer, then there is an odd cycle, and the 
graph is not bipartite


