CSE 421 Algorithms

Richard Anderson Lecture 3 Draw a picture of something from Seattle

What is the run time of the Stable Matching Algorithm?

Initially all m in M and w in W are free While there is a free m Executed at most n² times w highest on m's list that m has not proposed to if w is free, then match (m, w)else suppose (m_2, w) is matched if w prefers m to m_2 unmatch (m_2, w) match (m, w)

O(1) time per iteration

- Find free m
- · Find next available w
- If w is matched, determine m₂
- Test if w prefer m to m₂
- Update matching

What does it mean for an algorithm to be efficient?

Qualitatively better worst case
 performance than a brute force algorithm

Polynomial time efficiency

- An algorithm is efficient if it has a polynomial run time
- Run time as a function of problem size
 Run time: count number of instructions executed on an underlying model of computation
 - T(n): maximum run time for all problems of size at most n

Polynomial Time

 Algorithms with polynomial run time have the property that increasing the problem size by a constant factor increases the run time by at most a constant factor (depending on the algorithm)

Why Polynomial Time?

- Generally, polynomial time seems to capture the algorithms which are efficient in practice
- The class of polynomial time algorithms has many good, mathematical properties

Polynomial vs. Exponential Complexity • Suppose you have an algorithm which takes n! steps on a problem of size n • If the algorithm takes one second for a problem of size 10, estimate the run time for the following problems sizes: 12 14 16 18 20

Ignoring constant factors

- Express run time as O(f(n))
- Emphasize algorithms with slower growth rates
- Fundamental idea in the study of algorithms
- Basis of Tarjan/Hopcroft Turing Award

Why ignore constant factors?

- Constant factors are arbitrary

 Depend on the implementation
 - Depend on the details of the model
- Determining the constant factors is tedious and provides little insight

Why emphasize growth rates?

- The algorithm with the lower growth rate will be faster for all but a finite number of cases
- Performance is most important for larger problem size
- As memory prices continue to fall, bigger problem sizes become feasible
- Improving growth rate often requires new techniques

Formalizing growth rates

- T(n) is O(f(n)) [T : Z⁺ → R⁺]
 If sufficiently large n, T(n) is bounded by a constant multiple of f(n)
 - Exist c, n_0 , such that for $n > n_0$, T(n) < c f(n)
- T(n) is O(f(n)) will be written as:
 T(n) = O(f(n))
 - Be careful with this notation

Order the following functions in Prove $3n^2 + 5n + 20$ is O(n²) increasing order by their growth rate a) n log⁴n Let c = b) 2n² + 10n c) 2^{n/100} Let $n_0 =$ d) 1000n + log⁸ n e) n¹⁰⁰ f) 3ⁿ g) 1000 log¹⁰n h) n^{1/2} T(n) is O(f(n)) if there exist c, n_0 , such that for $n > n_0$, T(n) < c f(n)÷

Lower bounds

- T(n) is Ω(f(n))
 - T(n) is at least a constant multiple of f(n)
 - There exists an n_0 , and ϵ > 0 such that
 - $T(n) > \varepsilon f(n)$ for all $n > n_0$
- Warning: definitions of $\boldsymbol{\Omega}$ vary
- T(n) is $\Theta(f(n))$ if T(n) is O(f(n)) and T(n) is $\Omega(f(n))$

Useful Theorems

- If lim (f(n) / g(n)) = c for c > 0 then f(n) = Θ(g(n))
- If f(n) is O(g(n)) and g(n) is O(h(n)) then f(n) is O(h(n))
- If f(n) is O(h(n)) and g(n) is O(h(n)) then f(n) + g(n) is O(h(n))

Ordering growth rates

- For b > 1 and x > 0

 log^bn is O(n^x)
- For r > 1 and d > 0

 n^d is O(rⁿ)