

Draw a picture of something from

 Seattle
What is the run time of the Stable Matching Algorithm?

Initially all m in M and w in W are free
While there is a free m
Executed at most n^{2} times w highest on m's list that m has not proposed to if w is free, then match (m, w) else
suppose $\left(m_{2}, w\right)$ is matched
if w prefers m to m_{2}
unmatch $\left(m_{2}, w\right)$
match (m, w)

$O(1)$ time per iteration

- Find free m
- Find next available w
- If w is matched, determine m_{2}
- Test if w prefer m to m_{2}
- Update matching

Definitions of efficiency

- Fast in practice
- Qualitatively better worst case performance than a brute force algorithm

Polynomial time efficiency

- An algorithm is efficient if it has a polynomial run time
- Run time as a function of problem size
- Run time: count number of instructions executed on an underlying model of computation
$-\mathrm{T}(\mathrm{n})$: maximum run time for all problems of size at most n

Why Polynomial Time?

- Generally, polynomial time seems to capture the algorithms which are efficient in practice
- The class of polynomial time algorithms has many good, mathematical properties

Ignoring constant factors

- Express run time as $O(f(n))$
- Emphasize algorithms with slower growth rates
- Fundamental idea in the study of algorithms
- Basis of Tarjan/Hopcroft Turing Award

Polynomial Time

- Algorithms with polynomial run time have the property that increasing the problem size by a constant factor increases the run time by at most a constant factor (depending on the algorithm)

Polynomial vs. Exponential Complexity

- Suppose you have an algorithm which takes n ! steps on a problem of size n
- If the algorithm takes one second for a problem of size 10, estimate the run time for the following problems sizes:

12	14	16	18	20

14
16 18 20

Why ignore constant factors?

- Constant factors are arbitrary
- Depend on the implementation
- Depend on the details of the model
- Determining the constant factors is tedious and provides little insight

Why emphasize growth rates?

- The algorithm with the lower growth rate will be faster for all but a finite number of cases
- Performance is most important for larger problem size
- As memory prices continue to fall, bigger problem sizes become feasible
- Improving growth rate often requires new techniques

Formalizing growth rates

- $T(n)$ is $O(f(n))$
$\left[\mathrm{T}: \mathrm{Z}^{+} \rightarrow \mathrm{R}^{+}\right]$
- If sufficiently large $n, T(n)$ is bounded by a constant multiple of $f(n)$
- Exist $\mathrm{c}, \mathrm{n}_{0}$, such that for $\mathrm{n}>\mathrm{n}_{0}, \mathrm{~T}(\mathrm{n})<\mathrm{c}(\mathrm{n})$
- $T(n)$ is $O(f(n))$ will be written as:
$T(n)=O(f(n))$
- Be careful with this notation

Order the following functions in

 increasing order by their growth ratea) $n \log ^{4} n$
b) $2 n^{2}+10 n$
c) $2^{n / 100}$
d) $1000 n+\log ^{8} n$
e) n^{100}
f) 3^{n}
g) $1000 \log ^{10} \mathrm{n}$
h) $n^{1 / 2}$
$T(n)$ is $O(f(n))$ if there exist c, n_{0}, such that for $n>n_{0}$ $T(n)<c f(n)$

Lower bounds

- $T(n)$ is $\Omega(f(n))$
$-T(n)$ is at least a constant multiple of $f(n)$
- There exists an n_{0}, and $\varepsilon>0$ such that $\mathrm{T}(\mathrm{n})>\varepsilon \mathrm{f}(\mathrm{n})$ for all $\mathrm{n}>\mathrm{n}_{0}$
- Warning: definitions of Ω vary
- $T(n)$ is $\Theta(f(n))$ if $T(n)$ is $O(f(n))$ and $T(n)$ is $\Omega(f(n))$

Useful Theorems

- If $\lim (f(n) / g(n))=c$ for $c>0$ then $\mathrm{f}(\mathrm{n})=\Theta(\mathrm{g}(\mathrm{n}))$
- If $f(n)$ is $O(g(n))$ and $g(n)$ is $O(h(n))$ then $f(n)$ is $O(h(n))$
- If $f(n)$ is $O(h(n))$ and $g(n)$ is $O(h(n))$ then $f(n)+g(n)$ is $O(h(n))$

Ordering growth rates

- For $\mathrm{b}>1$ and $\mathrm{x}>0$
$-\log ^{b} n$ is $\mathrm{O}\left(\mathrm{n}^{\mathrm{x}}\right)$
- For r > 1 and d > 0
$-n^{d}$ is $O\left(r^{n}\right)$

