
CSE 421 Algorithms

Richard Anderson Autumn 2006 Lecture 2

Announcements

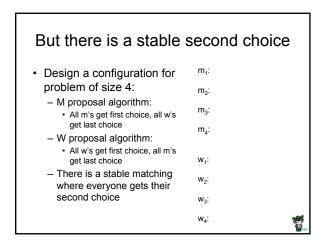
- · It's on the web.
- Homework 1, Due October 4

 It's on the web
- · Subscribe to the mailing list
- Richard's office hours:
 Transferre 0.00 0.00 mm Eviden 0.00 0.00
 - Tuesday, 2:30-3:20 pm, Friday, 2:30-3:20 pm.
- Ning's office hours:
 - Monday, 12:30-1:20 pm, Tuesday, 4:30-5:20 pm.

Algorithm under specified Many different ways of picking m's to propose Surprising result All orderings of picking free m's give the same result

- · Proving this type of result
 - Reordering argument
 - Prove algorithm is computing something mores specific

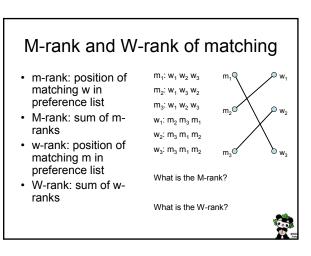
Show property of the solution – so it computes a specific stable matching


Proposal Algorithm finds the best possible solution for M

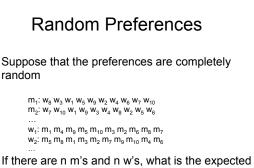
- Formalize the notion of best possible solution
- (m, w) is valid if (m, w) is in some stable matching
- best(m): the highest ranked w for m such that (m, w) is valid
- S* = {(m, best(m)}
- Every execution of the proposal algorithm computes S*

Proof

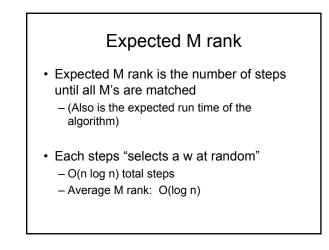
- See the text book pages 9 12
- Related result: Proposal algorithm is the worst case for W
- Algorithm is the M-optimal algorithm
- Proposal algorithms where w's propose is W-Optimal


Best choices for one side are bad for the other	
 Design a configuration for problem of size 4: M proposal algorithm: All m's get first choice, all w's get last choice W proposal algorithm: All w's get first choice, all m's get last choice 	m_1 : m_2 : m_3 : m_4 : w_1 : w_2 : w_3 : w_4 :

Key ideas


- Formalizing real world problem – Model: graph and preference lists
 - Mechanism: stability condition
- Specification of algorithm with a natural operation

 Proposal
- Establishing termination of process through invariants and progress measure
- Under specification of algorithm
- Establishing uniqueness of solution


Suppose there are n m's, and n w's

- · What is the minimum possible M-rank?
- What is the maximum possible M-rank?
- Suppose each m is matched with a random w, what is the expected M-rank?

value of the M-rank and the W-rank when the proposal algorithm computes a stable matching?

Expected W-rank

- If a w receives k random proposals, the expected rank for w is n/(k+1).
- On the average, a w receives O(log n) proposals
 - The average w rank is O(n/log n)

Probabilistic analysis

- Select items *with replacement* from a set of size n. What is the expected number of items to be selected until every item has been selected at least once.
- Choose k values at random from the interval [0, 1). What is the expected size of the smallest item.

What is the run time of the Stable Matching Algorithm?

Initially all m in M and w in W are free While there is a free m Executed at most n² times w highest on m's list that m has not proposed to if w is free, then match (m, w) else suppose (m₂, w) is matched if w prefers m to m₂ unmatch (m₂, w) match (m, w)

O(1) time per iteration

- · Find free m
- · Find next available w
- If w is matched, determine m₂
- Test if w prefer m to m₂
- Update matching

What does it mean for an algorithm to be efficient?