
1

CSE 421
Algorithms

Richard Anderson  
Autumn 2006

Lecture 2

Announcements

• It’s on the web.
• Homework 1, Due October 4

– It’s on the web
• Subscribe to the mailing list

• Richard’s office hours:
– Tuesday, 2:30-3:20 pm, Friday, 2:30-3:20 pm.

• Ning’s office hours:
– Monday, 12:30-1:20 pm,  Tuesday, 4:30-5:20 pm.

A closer look

• Stable matchings are 
not necessarily fair

m1:    w1 w2 w3

m2:    w2 w3 w1

m3:    w3 w1 w2

w1:   m2 m3 m1

w2:   m3 m1 m2

w3:   m1 m2 m3

m1

m2

m3

w1

w2

w3

How many stable matchings can you find?

Algorithm under specified

• Many different ways of picking m’s to propose
• Surprising result

– All orderings of picking free m’s give the same result

• Proving this type of result
– Reordering argument
– Prove algorithm is computing something mores 

specific
• Show property of the solution – so it computes a specific 

stable matching

Proposal Algorithm finds the best 
possible solution for M

• Formalize the notion of best possible solution

• (m, w) is valid if (m, w) is in some stable 
matching

• best(m): the highest ranked w for m such that 
(m, w) is valid

• S* = {(m, best(m)}
• Every execution of the proposal algorithm 

computes S*

Proof

• See the text book – pages 9 – 12

• Related result: Proposal algorithm is the 
worst case for W

• Algorithm is the M-optimal algorithm
• Proposal algorithms where w’s propose is 

W-Optimal



2

Best choices for one side are bad 
for the other

• Design a configuration for 
problem of size 4:
– M proposal algorithm:

• All m’s get first choice, all w’s
get last choice

– W proposal algorithm:
• All w’s get first choice, all m’s 

get last choice

m1:

m2:

m3:

m4:

w1:

w2:

w3:

w4:

But there is a stable second choice

• Design a configuration for 
problem of size 4:
– M proposal algorithm:

• All m’s get first choice, all w’s
get last choice

– W proposal algorithm:
• All w’s get first choice, all m’s 

get last choice

– There is a stable matching 
where everyone gets their 
second choice

m1:

m2:

m3:

m4:

w1:

w2:

w3:

w4:

Key ideas
• Formalizing real world problem

– Model: graph and preference lists
– Mechanism: stability condition

• Specification of algorithm with a natural 
operation
– Proposal

• Establishing termination of process through 
invariants and progress measure

• Under specification of algorithm
• Establishing uniqueness of solution

M-rank and W-rank of matching 
• m-rank: position of 

matching w in 
preference list

• M-rank: sum of m-
ranks

• w-rank: position of 
matching m in 
preference list

• W-rank: sum of w-
ranks

m1: w1 w2 w3

m2: w1 w3 w2

m3: w1 w2 w3

w1: m2 m3 m1

w2: m3 m1 m2

w3: m3 m1 m2

m1 w1

m2 w2

m3 w3

What is the M-rank?

What is the W-rank?

Suppose there are n m’s, and n w’s

• What is the minimum possible M-rank?

• What is the maximum possible M-rank?

• Suppose each m is matched with a 
random w,  what is the expected M-rank?

Random Preferences

Suppose that the preferences are completely 
random

If there are n m’s and n w’s, what is the expected 
value of the M-rank and the W-rank when the 
proposal algorithm computes a stable matching?

m1: w8 w3 w1 w5 w9 w2 w4 w6 w7 w10
m2: w7 w10 w1 w9 w3 w4 w8 w2 w5 w6
…
w1: m1 m4 m9 m5 m10 m3 m2 m6 m8 m7
w2: m5 m8 m1 m3 m2 m7 m9 m10 m4 m6
…



3

Expected Ranks

• Expected M rank

• Expected W rank

Guess – as a function of n

Expected M rank

• Expected M rank is the number of steps 
until all M’s are matched
– (Also is the expected run time of the 

algorithm)

• Each steps “selects a w at random”
– O(n log n) total steps
– Average M rank:  O(log n)

Expected W-rank

• If a w receives k random proposals, the 
expected rank for w is n/(k+1).

• On the average, a w receives O(log n) 
proposals
– The average w rank is O(n/log n)

Probabilistic analysis

• Select items with replacement from a set 
of size n.  What is the expected number of 
items to be selected until every item has 
been selected at least once. 

• Choose k values at random from the 
interval [0, 1).    What is the expected size 
of the smallest item.

What is the run time of the Stable 
Matching Algorithm?

Initially all m in M and w in W are free
While there is a free m

w highest on m’s list that m has not proposed to
if w is free, then match (m, w)
else 

suppose (m2, w) is matched
if w prefers m to m2

unmatch (m2, w)
match (m, w)

Executed at most n2 times

O(1) time per iteration

• Find free m
• Find next available w
• If w is matched, determine m2

• Test if w prefer m to m2

• Update matching



4

What does it mean for an algorithm 
to be efficient?


