CSE 421
Algorithms
Richard Anderson
Autumn 2006
Lecture 2

Announcements

- It's on the web.
- Homework 1, Due October 4 - It's on the web
- Subscribe to the mailing list
- Richard's office hours:
- Tuesday, 2:30-3:20 pm, Friday, 2:30-3:20 pm.
- Ning's office hours:
- Monday, 12:30-1:20 pm, Tuesday, 4:30-5:20 pm.

Algorithm

Initially all m in M and w in W are free While there is a free m
w highest on m's list that m has not proposed to
if w is free, then match (m, w)
else
suppose $\left(m_{2}, w\right)$ is matched
if w prefers m to m_{2}
unmatch $\left(m_{2}, w\right)$
match (m, w)

Algorithm under specified

- Many different ways of picking m's to propose
- Surprising result
- All orderings of picking free m's give the same result
- Proving this type of result
- Reordering argument
- Prove algorithm is computing something mores specific
- Show property of the solution - so it computes a specific stable matching

A closer look

- Stable matchings are not necessarily fair

```
m1: w
m}\mp@subsup{m}{2}{:
m3: w
w
w
w
How many stable matchings can you find?
```


Proposal Algorithm finds the best possible solution for M

- Formalize the notion of best possible solution
- (m, w) is valid if (m, w) is in some stable matching
- best (m) : the highest ranked w for m such that (m, w) is valid
- $S^{*}=\{(\mathrm{m}$, best $(\mathrm{m})\}$
- Every execution of the proposal algorithm computes S^{*}

Proof

- See the text book - pages 9-12
- Related result: Proposal algorithm is the worst case for W
- Algorithm is the M-optimal algorithm
- Proposal algorithms where w's propose is W-Optimal

Best choices for one side are bad for the other

- Design a configuration for m_{1} : problem of size 4: $\quad m_{2}$:
- M proposal algorithm:
- All m's get first choice, all w's m_{3} : get last choice
- W proposal algorithm:
- All w's get first choice, all m's get last choice

$$
w_{1}:
$$

$$
\mathrm{w}_{2}:
$$

W_{3} :
W_{4} :
$\%$

But there is a stable second choice

- Design a configuration for m_{1} : problem of size 4: $\quad m_{2}$:
- M proposal algorithm:
- All m's get first choice, all w's m_{3} get last choice m_{4}
- W proposal algorithm:
m_{4}.
- All w's get first choice, all m's get last choice
w_{1} :
- There is a stable matching where everyone gets their second choice

M-rank and W-rank of matching

- m-rank: position of matching w in preference list
- M-rank: sum of mranks
- w-rank: position of matching m in preference list
- W-rank: sum of wranks

$$
\begin{aligned}
& m_{1}: w_{1} w_{2} w_{3} \\
& m_{2}: w_{1} w_{3} w_{2} \\
& m_{3}: w_{1} w_{2} w_{3} \\
& w_{1}: m_{2} m_{3} m_{1} \\
& w_{2}: m_{3} m_{1} m_{2} \\
& w_{3}: m_{3} m_{1} m_{2}
\end{aligned}
$$

What is the M-rank?

What is the W-rank?

Key ideas

- Formalizing real world problem
- Model: graph and preference lists
- Mechanism: stability condition
- Specification of algorithm with a natural operation
- Proposal
- Establishing termination of process through invariants and progress measure
- Under specification of algorithm
- Establishing uniqueness of solution

Suppose there are n m's, and n w's

- What is the minimum possible M-rank?
- What is the maximum possible M-rank?
- Suppose each m is matched with a random w , what is the expected M -rank?

Random Preferences

Suppose that the preferences are completely random

$$
\begin{aligned}
& m_{1}: w_{8} w_{3} w_{1} w_{5} w_{9} w_{2} w_{4} w_{6} w_{7} w_{10} \\
& m_{2}: w_{7} w_{10} w_{1} w_{9} w_{3} w_{4} w_{8} w_{2} w_{5} w_{6} \\
& \ldots \\
& \ldots \\
& w_{1}: m_{1} m_{4} m_{9} m_{5} m_{10} m_{3} m_{2} m_{6} m_{8} m_{7} \\
& w_{2}: m_{5} m_{8} m_{1} m_{3} m_{2} m_{7} m_{9} m_{10} m_{4} m_{6}
\end{aligned}
$$

If there are n m's and n w's, what is the expected value of the M -rank and the W -rank when the proposal algorithm computes a stable matching?

Expected Ranks

- Expected M rank
- Expected W rank

Expected W-rank

- If a w receives k random proposals, the expected rank for w is $n /(k+1)$.
- On the average, a w receives $\mathrm{O}(\log \mathrm{n})$ proposals
- The average w rank is $\mathrm{O}(\mathrm{n} / \log \mathrm{n}$)
- Each steps "selects a w at random"
- O(n log n) total steps
- Average M rank: $O(\log n)$

Expected M rank is the number of steps until all M's are matched

- (Also is the expected run time of the algorithm)

Expected M rank

-Average Mrank: O(log n)

Probabilistic analysis

- Select items with replacement from a set of size n . What is the expected number of items to be selected until every item has been selected at least once.
- Choose k values at random from the interval $[0,1) . \quad$ What is the expected size of the smallest item.

What is the run time of the Stable Matching Algorithm?

Initially all m in M and w in W are free
While there is a free m
Executed at most n^{2} times w highest on m's list that m has not proposed to if w is free, then match (m, w) else
suppose $\left(m_{2}, w\right)$ is matched
if w prefers m to m_{2}
unmatch $\left(m_{2}, w\right)$ match (m, w)

$\mathrm{O}(1)$ time per iteration

- Find free m
- Find next available w
- If w is matched, determine m_{2}
- Test if w prefer m to m_{2}
- Update matching

What does it mean for an algorithm to be efficient?

