
1

CSE 421
Algorithms

Richard Anderson
Autumn 2006

Lecture 1

Course Introduction

• Instructor
– Richard Anderson, anderson@cs.washington.edu
– Office hours:

• CSE 582
• Tuesday, 2:30-3:20 pm, Friday, 2:30-3:20 pm.

• Teaching Assistant
– Ning Chen, ning@cs.washington.edu
– Office hours:

• Monday, 12:30-1:20 pm, Tuesday, 4:30-5:20 pm

Announcements

• It’s on the web.
• Homework 1, Due October 4

– It’s on the web
• Subscribe to the mailing list

Text book

• Algorithm Design
• Jon Kleinberg, Eva Tardos

• Read Chapters 1 & 2

CSE 421 at Beihang University
• Parallel Course offering at Beihang

University in Beijing
• Course offered with Tutored Video

Instruction
– Lectures recorded at University of Washington
– Lectures shown in the classroom with facilitators

• Student initiated discussion
• Instructor initiated discussion
• Classroom Activities

Beihang University Students

2

Classroom Interaction

• Classroom Presenter
• Tablet PC’s to support active learning
• Educational basis

– Classroom Feedback
– Active Learning
– Pedagogical Goals

• Tablets will be used in UW class about
once a week

All of Computer Science is the
Study of Algorithms

How to study algorithms

• Zoology
• Mine is faster than yours is
• Algorithmic ideas

– Where algorithms apply
– What makes an algorithm work
– Algorithmic thinking

Introductory Problem:
Stable Matching

• Setting:
– Assign TAs to Instructors
– Avoid having TAs and Instructors wanting

changes
• E.g., Prof A. would rather have student X than her

current TA, and student X would rather work for
Prof A. than his current instructor.

Formal notions

• Perfect matching
• Ranked preference lists
• Stability

m1 w1

m2 w2

Example (1 of 3)

• m1: w1 w2

• m2: w2 w1

• w1: m1 m2

• w2: m2 m1

m1

m2 w2

w1

3

Example (2 of 3)

• m1: w1 w2

• m2: w1 w2

• w1: m1 m2

• w2: m1 m2

m1

m2 w2

w1

Find a stable matching

Example (3 of 3)

• m1: w1 w2

• m2: w2 w1

• w1: m2 m1

• w2: m1 m2

m1

m2 w2

w1

Intuitive Idea for an Algorithm

• m proposes to w
– If w is unmatched, w accepts
– If w is matched to m2

• If w prefers m to m2, w accepts
• If w prefers m2 to m, w rejects

• Unmatched m proposes to highest w on its
preference list that m has not already
proposed to

Algorithm

Initially all m in M and w in W are free
While there is a free m

w highest on m’s list that m has not proposed to
if w is free, then match (m, w)
else

suppose (m2, w) is matched
if w prefers m to m2

unmatch (m2, w)
match (m, w)

Example

m1: w1 w2 w3

m2: w1 w3 w2

m3: w1 w2 w3

w1: m2 m3 m1

w2: m3 m1 m2

w3: m3 m1 m2

m1

m2 w2

w1

m3 w3

Does this work?

• Does it terminate?
• Is the result a stable matching?

• Begin by identifying invariants and
measures of progress
– m’s proposals get worse
– Once w is matched, w stays matched
– w’s partners get better (have lower w-rank)

4

Claim: The algorithm stops in at
most n2 steps

• Why?

When the algorithms halts, every w
is matched

• Why?

• Hence, the algorithm finds a perfect
matching

The resulting matching is stable

• Suppose
– m1 prefers w2 to w1

• How could this happen?

m1 w1

m2 w2

Result

• Simple, O(n2) algorithm to compute a
stable matching

• Corollary
– A stable matching always exists

A closer look

• Stable matchings are
not necessarily fair

m1: w1 w2 w3

m2: w2 w3 w1

m3: w3 w1 w2

w1: m2 m3 m1

w2: m3 m1 m2

w3: m1 m2 m3

m1

m2

m3

w1

w2

w3

How many stable matchings can you find?

Algorithm under specified

• Many different ways of picking m’s to propose
• Surprising result

– All orderings of picking free m’s give the same result

• Proving this type of result
– Reordering argument
– Prove algorithm is computing something mores

specific
• Show property of the solution – so it computes a specific

stable matching

5

Proposal Algorithm finds the best
possible solution for M

• Formalize the notion of best possible solution

• (m, w) is valid if (m, w) is in some stable
matching

• best(m): the highest ranked w for m such that
(m, w) is valid

• S* = {(m, best(m)}
• Every execution of the proposal algorithm

computes S*

Proof

• See the text book – pages 9 – 12

• Related result: Proposal algorithm is the
worst case for W

• Algorithm is the M-optimal algorithm
• Proposal algorithms where w’s propose is

W-Optimal

Best choices for one side are bad
for the other

• Design a configuration for
problem of size 4:
– M proposal algorithm:

• All m’s get first choice, all w’s
get last choice

– W proposal algorithm:
• All w’s get first choice, all m’s

get last choice

m1:

m2:

m3:

m4:

w1:

w2:

w3:

w4:

But there is a stable second choice

• Design a configuration for
problem of size 4:
– M proposal algorithm:

• All m’s get first choice, all w’s
get last choice

– W proposal algorithm:
• All w’s get first choice, all m’s

get last choice

– There is a stable matching
where everyone gets their
second choice

m1:

m2:

m3:

m4:

w1:

w2:

w3:

w4:

Key ideas
• Formalizing real world problem

– Model: graph and preference lists
– Mechanism: stability condition

• Specification of algorithm with a natural
operation
– Proposal

• Establishing termination of process through
invariants and progress measure

• Under specification of algorithm
• Establishing uniqueness of solution

