
University of Washington December 15, 2006
Department of Computer Science and Engineering
CSE 421, Fall 2006

Final Exam Solution, December, 2006

NAME:

Instructions:

• Closed book, closed notes, no calculators

• Time limit: One hour 50 minutes

• Answer the problems on the exam paper.

• If you need extra space use the back of a page

• Problems are not of equal difficulty, if you get stuck on
a problem, move on.

1 /30
2 /30
3 /30
4 /30
5 /20
6 /20
7 /20
8 /20
9 /20

Total /220

Problem 1 (30 points) Recurrences:

Give solutions to the following recurrences. Justify your answers.

a)

T (n) =

{
5T (n/5) + n if n > 1
1 if n = 1

O(n log n). The work per level is n, and there are log5 n levels.

b)

T (n) =

{
2T (n/5) + n1/2 if n > 1
1 if n = 1

O(n1/2). The work per level is decreasing, so this is dominated by the work at the top level.
The growth factor of work per level is 2√

5
< 1.

c)

T (n) =

{
6T (n/5) + n if n > 1
1 if n = 1

O(nlog5 6). The work per level is increasing, so the recurrence is dominated by the work at
the leaves. The branching factor is 6, and the depth is log5 n, so the number of leaves is:

6log5 n = (5log5 6)log5 n = nlog5 6.

Problem 2 (30 points)Maximal Independent Set:

Let G = (V,E) be an undirected graph. A subset I of the vertices is said to be independent if for
all u, v ∈ I, (u, v) 6∈ E. A set of vertices M is a maximal independent set if M is not contained in
any larger independent set, i.e., if M ⊂ M ′ then M ′ is not independent. A set of vertices M is a
maximum independent set if it is a largest independent set in the graph, i.e., M is independent, and
if M ′ is any other independent set of G, |M ′| ≤ |M |. In other words, a maximal independent set is
an independent set that we cannot add any more vertices to without it ceasing to be independent,
a maximum independent set is an independent set that contains as many vertices as possible.

a) Show that a maximal independent set is not necessarily a maximum independent set.

• • •
a b c

{b} is a maximal independent set, while {a, b} is a maximum independent set.

b) Show that a maximum independent set is a maximal independent set.

Let I be a maximum independent set. I could not be strictly contained in another independent
set I ′, since I has maximum size for an independent set. Hence, I must also be maximal.

c) Give a polynomial time algorithm that finds a maximal independent set in a graph.

The idea is to use a greedy algorithm which builds an independent set one element at a time
by adding an element to the set and discarding all of the neighboring elements.

MaximalIndependentSet(G = (V,E))
I := ∅;
X := V ;
while |X| > 0

choose v from X
I := I ∪ {v};
X := X − {v};
for each u in N(v)

X := X − {u};

Problem 3 (30 points) Short Answer:

a) Compute the Fourier Transform of 1 + 2x + x2 at four points.

The n point Fourier Transform is to evaluate the function at the n-th roots of unity. For four
points, this is evaluating at {1,−1, i,−i}, giving {4, 0, 2i,−2i}.

b) Why does Dijkstra’s algorithm not work for graphs with negative cost edges.

Dijkstra’s algorithm can fail with negative cost edges because encountering a negative edge
can reduce the cost of a vertex that has already been processed.

c) What is Cook’s theorem?

Broadly stated, Cook’s theorem is that there is an NP-Complete problem. The specific version
stated in class was that the Circuit Satisfiability problem is NP-Complete.

d) If you know problem X is NP-complete, and you want to show that problem Y is NP-complete,
do you reduce X to Y , or reduce Y to X. Justify your answer.

Reduce X to Y . You want to show that you can use Y to solve X.

e) Name two minimum spanning tree algorithms. Which one could be called “Dijkstra’s algo-
rithm for minimum spanning trees”.

Kruskal and Prim. Prim’s algoirhm has the same structure as Dijkstra’s algorithm, so it
could be called “Dijkstra’s algorithm for minimum spanning trees”.

f) If you have n points in the plane, what is the run time of the fastest known algorithm for
finding the closest pair of points.

O(n log n) by Divide and Conquer.

Problem 4 (30 points) Longest Path Problem:
For each of the following problems sketch an efficient algorithm or give an NP-completeness proof.
You may draw on results from class or the textbook. (Note: In this problem, path length is the
number of edges.)

a) Longest path in a directed acyclic graph. Given vertices s and t, find a maximum length path
from s to t.

Compute a topological sort of the vertices. Then assign to each vertex a distance from s that
is one plus the maximum distance of all of its predecessors to s.

An alternate (but less efficient approach), is to assign all edges a distance of -1, and then use
the Bellman-Ford algorithm to compute shortest paths.

b) Path of length K. Given a directed graph, vertices s and t, and an integer K, find a path of
length exactly K between s and t.

This can be done with a dynamic programming algorithm, which records that there is a path
of length j from s to v if there is a path of length j − 1 from s to u and an edge from u to v.

K phases of the Bellman-Ford algorithm (with edges assigned a length of one) does not work
for this, since a single phase of Bellman-Ford can extend a path by more than one edge.

c) Longest simple path. Given a directed graph and vertices s and t, find the longest simple
path between s and t. (Recall that a simple path is a path with no repeated vertices.)

This is NP-Complete. The reduction is from the Hamiltonian Path problem (covered on the
last day of class).

Problem 5 (20 points) Non-adjacent LCS:
The sequence C = c1, . . . , ck is a non-adjacent subsequence of A = a1, . . . , an, if C can be formed by
selecting non-adjacent elements of A, i.e., if c1 = ar1 , c2 = ar2 , . . . , ck = ark

, where rj < rj+1 − 1.
The non-adjacent LCS problem is given sequences A and B, find a maximum length sequence C
which is a non-adjacent subsequence of both A and B.

This problem can be solved with dynamic programming. Give a recurrence that is the basis for
a dynamic programming algorithm. You should also give the appropriate base cases, and explain
why your recurrence is correct.

The recurrence for Opt(i, j) is giving the length of the longest common non-adjacent subsequence
of a1, . . . , ai and b1, . . . , bj . The key idea is that we match ai and bj , then we cannot match ai−1 or
bj−1. This alters the recurrence from the LCS problem by making the dependency on Opt(i−2, j−2)
if there is a match. The recurrence becomes:

Opt(i, j) =

{
max(Opt(i− 2, j − 2) + 1, Opt(i− 1, j), Opt(i, j − 1)) if ai = bj

max(Opt(i− 1, j), Opt(i, j − 1)) if ai 6= bj

To handle the base cases appropriately, we need to ensure that we the don’t access indices that
are out of bounds. The most convenient way to do this is just to define Opt(0, j) = Opt(i, 0) =
Opt(−1, j) = Opt(i,−1) = 0 so we can avoid special cases in the recurrence.

Problem 6 (20 points) Mod K Subset Sum:

The mod K subset sum problem is: given a set of integers S = {s1, . . . , sn} and an integer K, does
there exist a non-empty subset S′ of S such that

∑
s∈S′ s = W with W mod K = 0.

Give a dynamic programming algorithm for solving the mod K subset sum problem. Your algorithm
should return the set S′ if it exists.

The basic idea is that we use an array S[0 . . .K − 1] to keep track of the mod K sums. (Using
an array of size K can be a considerable savings over solving the full subset sum, and then testing
each of the set sizes divisible by K). The value S[j] is used to tell us if there is a subset that has
size (mod K) of j. To allow us to reconstruct the set we store the index of an element (instead of
just using a boolean). The code uses an auxilliary array to avoid a bug where multiple copies of
the same element are used in the sum.

The code for filling in the array is:

for i := 1 to n
for j := 0 to K − 1

if S[j] = 0 and S[(j − si) mod K] 6= 0
T [j] := i;

else
T [j] := S[j];

S = T ;

When the array is filled in, the algorithm tests is S[0] is non-zero. If it is, a set can be reconstructed
by tracing back through the array, picking out elements until the cell 0 is reached for a second time.

Problem 7 (20 points) Capacity Reduction for NetFlow:

Let G = (V,E) be a flow graph with maximum flow f . Let e be an edge with capacity c. Suppose
that the edge has it’s capacity reduced to c−1. Describe an O(n+m) time algorithm that computes
a new maximum flow f ′, starting from the flow f for the modified flow graph. Justify the correctness
of your algorithm.

Let e be the edge that has its capacity reduced from c to c− 1.
If f(e) ≤ c− 1 we don’t need to do anything.
If f(e) = c we need to reduce the flow by one unit along e. We do this by finding an s − t path
through e comprising of edges with positive flow. This can be done in O(n+m) time using breadth
first search. We reduce the flow along this path by one unit and have a valid flow for the graph.
The resulting flow might, or might not be optimal. We look at the residual graph. If there is an
s− t path with augment along this path, and have an maximum flow. If the residual graph did not
have an s − t path, we had a maximum flow. Note that at most one augmentation is necessary,
since we are within one of a maximum flow value.

Problem 8 (20 points) Vertex cut:

Let G = (V,E) be a directed graph with distinguished vertices s and t. Describe an algorithm to
compute a minimum sized set of vertices to remove to separate s and t. Your algorithm should
identify the actual vertices to remove (and not just determine the minimum number of vertices that
could be removed).

We build a flow graph and then use the minimum cut in the graph to determine the set of vertices
to remove. We then split each vertex v, other than s or t into vertices vin and vout with a unit
capacity edge from vin to vout. The vertex s is replaced by sout and t is replaced by tin. The edge
(u, v) is replaced by an edge (uout, vin) with infinite capacity.

We compute a maximum flow between sout and tin. Let S be the set of vertices reachable from sout

in the residual graph by paths of positive capacity. We say that a vertex v is a cut vertex if vin is
in S, but vout is not in S. The cut vertices are a minimum set of vertices to remove to separate the
graph.

Problem 9 (20 points) Currency Conversion:

A group of traders are leaving India, and need to convert their Rupees into various international
currencies. There are n traders and m currencies. Trader i has Ti Rupees to convert. The bank has
Bj Rupees worth of currency j. Trader i is willing to trade as much Cij of his Rupees for currency
j. (For example, a trader with 1000 rupees might be willing to convert up to 700 of his Rupees for
USD, up to 500 of his Rupees for Japaneses Yen, and up to 500 of his Rupees for Euros).

Assuming that all traders give their requests to the bank at the same time, describe an algorithm
that the bank can use to satisfy the requests (if it can).

We express this problem as a network flow problem. The idea for the network flow problem is that
we construct a flow graph, where the fluid is Rupees and the allocation of flow shows how this is
transfered into different currencies.

The graph has vertices x1, . . . , xn for the traders and y1, . . . , ym for the currencies. The source s is
connected to the vertices x1, . . . , xn, and the vertices y1, . . . , ym are connected to the sink t. There
are edges from the vertices x1, . . . , xn to the vertices y1, . . . , ym.

An edge (s, xi) has capacity Ti, the edge (xi, yj) has capacity Cij and the edge (yj , t) has capacity
Bj . A flow corresponds to converting money into the different currencies. The capacity constraints

ensure that the traders and banks don’t exceed their amounts of currency, and that the traders get
appropriate currencies. If there is a flow of

∑n
i=1 Ti then all traders exchange all their money. The

maximum flow clearly can’t exceed this, so we compute a maximum flow in this graph.

