Five Problems

CSE 421 Richard Anderson

August 30, 2006

CSE 421, University of Washington, Autumn 2006

Theory of Algorithms

- · What is expertise?
- · How do experts differ from novices?

August 30, 2006

CSE 421, University of Washington, Autumn 2006

Introduction of five problems

- Show the types of problems we will be considering in the class
- · Examples of important types of problems
- Similar looking problems with very different characteristics
- Problems
 - Scheduling
 - Weighted Scheduling
 - Bipartite Matching
 - Maximum Independent Set
 - Competitive Scheduling

August 30, 2006

CSE 421, University of Washington, Autumn 2006

What is a problem?

- Instance
- Solution
- · Constraints on solution
- · Measure of value

August 30, 2006

CSE 421, University of Washington, Autumn 2006

Problem: Scheduling

- Suppose that you own a banquet hall
- You have a series of requests for use of the hall: $(s_1, f_1), (s_2, f_2), \dots$

_ _____

 Find a set of requests as large as possible with no overlap

August 30, 2006

CSE 421, University of Washington, Autumn 2006

What	is the large	est solutio	on?
_			
_		· <u></u> -	
August 30, 2006	CSF 421. University of Washing	ton Autumn 2006	Student

Greedy Algorithm

- · Test elements one at a time if they can be members of the solution
- · If an element is not ruled out by earlier choices, add it to the solution
- · Many possible choices for ordering (length, start time, end time)
- · For this problem, considering the jobs by increasing end time works

August 30, 2006

CSE 421, University of Washington, Autumn 2006

Suppose we add values?

- (s_i, f_i, v_i), start time, finish time, payment
- · Maximize value of elements in the solution

August 30, 2006

CSE 421, University of Washington, Autumn 2006

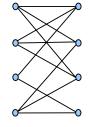
Greedy Algorithms

- · Earliest finish time
- · Maximum value
- Give counter examples to show these algorithms don't find the maximum value solution

August 30, 2006

CSE 421, University of Washington, Autumn 2006

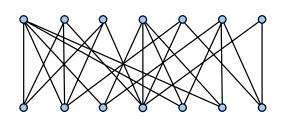
Dynamic Programming


- Requests R₁, R₂, R₃, . . .
- · Assume requests are in increasing order of finish time $(f_1 < f_2 < f_3 ...)$
- Opt; is the maximum value solution of $\{R_1, R_2, \ldots, R_i\}$ containing R_i
- Opt_i = Max{ j | $f_i < s_i$ }[Opt_i + v_i]

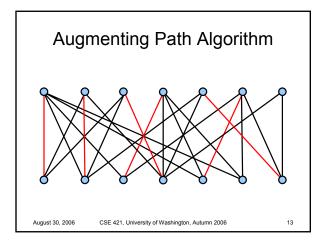
August 30, 2006

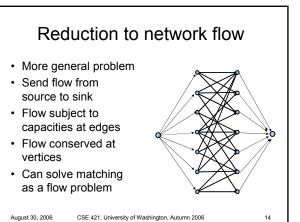
CSE 421. University of Washington, Autumn 2006

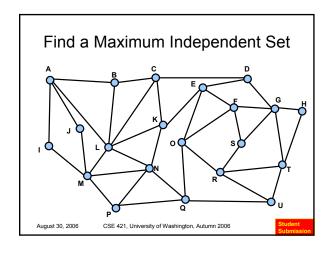
Matching

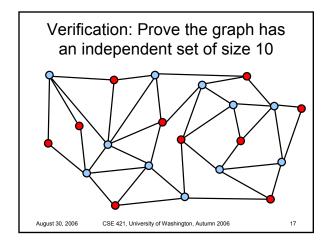

- · Given a bipartite graph G=(U,V,E), find a subset of the edges M of maximum size with no common endpoints.
- · Application:
 - U: Professors
 - V: Courses
 - (u,v) in E if Prof. u can teach course v

August 30, 2006


CSE 421, University of Washington, Autumn 2006


Find a maximum matching


August 30, 2006

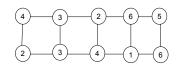

CSE 421, University of Washington, Autumn 2006

Maximum Independent Set · Given an undirected graph G=(V,E), find a set I of vertices such that there are no edges between vertices of I · Find a set I as large as possible August 30, 2006 CSE 421, University of Washington, Autumn 2006 15

Key characteristic · Hard to find a solution • Easy to verify a solution once you have · Other problems like this - Hamiltonian circuit - Clique - Subset sum - Graph coloring CSE 421, University of Washington, Autumn 2006

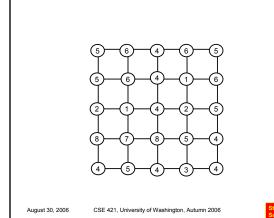
August 30, 2006

NP-Completeness


- · Theory of Hard Problems
- A large number of problems are known to be equivalent
- · Very elegant theory

August 30, 2006

CSE 421, University of Washington, Autumn 2006


Are there even harder problems?

- · Simple game:
 - Players alternating selecting nodes in a graph
 - · Score points associated with node
 - · Remove nodes neighbors
 - When neither can move, player with most points wins

August 30, 2006

CSE 421, University of Washington, Autumn 2006

Competitive Facility Location

- · Choose location for a facility
 - Value associated with placement
 - Restriction on placing facilities too close together
- Competitive
 - Different companies place facilities
 - · E.g., KFC and McDonald's

August 30, 2006

CSE 421, University of Washington, Autumn 2006

22

Complexity theory

- · These problems are P-Space complete instead of NP-Complete
 - Appear to be much harder
 - No obvious certificate
 - G has a Maximum Independent Set of size 10
 - Player 1 wins by at least 10 points

August 30, 2006

CSE 421, University of Washington, Autumn 2006

Summary

- · Scheduling
- · Weighted Scheduling
- · Bipartite Matching
- · Maximum Independent Set
- · Competitive Scheduling

August 30, 2006

CSE 421, University of Washington, Autumn 2006