

Problems

Winter 2005 Paul Beame

Complexity

- The complexity of an algorithm associates a number T(N), the best/worst/average-case time the algorithm takes, with each problem size N.
- n Mathematically,
 - ⁿ T is a function that maps positive integers giving problem size to positive real numbers giving number of steps.

Efficient = Polynomial Time Polynomial time

- n Running time $T(N) ≤ cN^k+d$ for some c,d,k>0
- Why polynomial time?
- If problem size grows by at most a constant factor then so does the running time
 - E.g. $T(2N) \leq c(2N)^k + d \leq 2^k(cN^k + d)$
 - Polynomial-time is exactly the set of running times that have this property
- $_{\rm n}\,$ Typical running times are small degree polynomials, mostly less than N³, at worst N6, not N^{100}

- Same problem as interval scheduling except that each request i also has an associated value or weight w_i
 - n w_i might be
 - amount of money we get from renting out the resource for that time period
 - n amount of time the resource is being used
- Goal: Find compatible subset A of requests with maximum total weight

13

