
1

�

����������	
�������
���

�������� �

Complexity and Representative
Problems

Winter 2005
Paul Beame

�

Measuring efficiency:
The RAM model

n RAM = Random Access Machine

n Time ≈ # of instructions executed in an
ideal assembly language
n each simple operation (+,*,-,=,if,call) takes

one time step
n each memory access takes one time step

�

Complexity analysis

n Problem size N
n Worst-case complexity: max # steps

algorithm takes on any input of size N
n Best-case complexity: min # steps

algorithm takes on any input of size N
n Average-case complexity: avg # steps

algorithm takes on inputs of size N

�

Stable Matching

n Problem size
n N=2n2 words

n 2n people each with a preference list of length n
n 2n2log n bits

n specifying an ordering for each preference list takes nlog
n bits

n Brute force algorithm
n Try all n! possible matchings

n Gale-Shapley Algorithm
n n2 iterations, each costing constant time

n For each man an array listing the women in preference
order

n For each woman an array listing the prefences indexed
by the names of the men

�

Complexity

n The complexity of an algorithm associates a
number T(N), the best/worst/average-case
time the algorithm takes, with each problem
size N.

n Mathematically,
n T is a function that maps positive integers

giving problem size to positive real
numbers giving number of steps.

�

Efficient = Polynomial Time

n Polynomial time
n Running time T(N) ≤≤≤≤ cNk+d for some c,d,k>0

n Why polynomial time?
n If problem size grows by at most a constant factor

then so does the running time
n E.g. T(2N) ≤≤≤≤ c(2N)k+d ≤≤≤≤ 2k(cNk+d)
n Polynomial-time is exactly the set of running

times that have this property
n Typical running times are small degree

polynomials, mostly less than N3, at worst N6, not
N100

2

�

Complexity

Problem size

T
im

e

T(N)

�

O-notation etc

n Given two positive functions f and g
n f(N) is O(g(N)) iff there is a constant c>0 so

that f(N) is eventually
always ≤≤≤≤ c g(N)

n f(N) is o(g(N)) iff the ratio f(N)/g(N) goes to 0
as N gets large

n f(N) is ΩΩΩΩ(g(N)) iff there is a constant εεεε>0 so
that f(N) is ≥≥≥≥ εεεε g(N) for infinitely
many values of N

n f(N) is ΘΘΘΘ(g(N)) iff f(N) is O(g(N)) and f(N) is ΩΩΩΩ(g(N))

Note: The definition of ΩΩΩΩ is the same as “f(N) is not o(g(N))”

	

Complexity

Problem size

T
im

e

T(N)

�

5 Representative Problems

n Interval Scheduling
n Single resource
n Reservation requests

n Of form “Can I reserve it from start time
s to finish time f?”

n s <<<< f
n Find: maximum number of requests that

can be scheduled so that no two
reservations have the resource at the
same time

��

Interval scheduling

n Formally
n Requests 1,2,…,n

n request i has start time s i and finish time f i >>>> s i
n Requests i and j are compatible iff either

n request i is for a time entirely before request j
n f i ≤≤≤≤ s j

n or, request j is for a time entirely before
request i

n f j ≤≤≤≤ s i
n Set A of requests is compatible iff every pair of

requests i,j∈ A, i≠≠≠≠j is compatible
n Goal: Find maximum size subset A of compatible

requests

��

Interval Scheduling

n We shall see that an optimal solution
can be found using a “greedy algorithm”
n Myopic kind of algorithm that seems to

have no look-ahead

n These algorithms only work when the
problem has a special kind of structure

n When they do work they are typically very
efficient

3

��

Weighted Interval Scheduling

n Same problem as interval scheduling
except that each request i also has an
associated value or weight w i
n w i might be

n amount of money we get from renting
out the resource for that time period

n amount of time the resource is being
used

n Goal: Find compatible subset A of
requests with maximum total weight

��

Weighted Interval Scheduling

n Ordinary interval scheduling is a special case
of this problem
n Take all wi =1

n Problem is quite different though
n E.g. one weight might dwarf all others

n “Greedy algorithms” don’t work

n Solution: “Dynamic Programming”
n builds up optimal solutions from smaller problems

using a compact table to store them

��

Bipartite Matching

n A graph G=(V,E) is bipartite iff
n V consists of two disjoint pieces X and Y

such that every edge e in E is of the form
(x,y) where x∈∈∈∈X and y∈∈∈∈Y

n Similar to stable matching situation but in
that case all possible edges were present

n M⊆⊆⊆⊆E is a matching in G iff no two edges
in M share a vertex

n Goal: Find a matching M in G of
maximum possible size

��

Bipartite Matching

n Models assignment problems
n X represents jobs, Y represents machines
n X represents professors, Y represents courses

n If |X|=|Y|=n
n G has perfect matching iff maximum matching has

size n

n Solution: polynomial-time algorithm using
“augmentation” technique
n also used for solving more general class of

network flow problems

��

Independent Set

n Given a graph G=(V,E)
n A set I⊆⊆⊆⊆V is independent iff no two nodes

in I are joined by an edge

n Goal: Find an independent subset I in G
of maximum possible size

n Models conflicts and mutual exclusion

��

Independent Set

n Generalizes
n Interval Scheduling

n Vertices in the graph are the requests
n Vertices are joined by an edge if they

are not compatible
n Bipartite Matching

n Given bipartite graph G=(V,E) create
new graph G’=(V’,E’) where

n V’=E
n Two elements of V’ (which are edges in G)

are joined if they share an endpoint in G

4

�	

Bipartite Matching vs Independent
Set

1

2 3 4

5 6

7

1 2

3

4

5
6

78
8

9 9

G=(U∪∪∪∪V,E) G’=(V’,E’)

�

Independent Set

n No polynomial-time algorithm is known
n But to convince someone that there was a large

independent set all you’d need to do is show it to
them
n they can easily convince themselves that the

set is large enough and independent
n Convincing someone that there isn’t one seems

much harder

n We will show that Independent Set is
NP-complete
n Class of all the hardest problems that have the

property above

��

Competitive Facility Location

n Two players competing for market share in a
geographic area
n e.g. McDonald’s, Burger King

n Rules:
n Region is divided into n zones, 1,…,n
n Each zone i has a value b i

n Revenue derived from opening franchise in that
zone

n No adjacent zones may contain a franchise
n i.e., zoning regulations limit density

n Players alternate opening franchises
n Find: Given a target total value B is there a strategy

for the second player that always achieves ≥ B?

��

Competitive Facility Location

n Model geography by
n A graph G=(V,E) where

n V is the set {1,…,n} of zones
n E is the set of pairs (i,j) such that i and j

are adjacent zones

n Observe:
n The set of zones with franchises will form

an independent set in G

��

Competitive Facility Location

10 1 5 15 5 1 5 1 15 10

Target B = 20 achievable ?

What about B = 25 ?

��

Competitive Facility Location

n Checking that a strategy is good seems hard
n You’d have to worry about all possible responses

at each round!
n a giant search tree of possibilities

n Problem is PSPACE-complete
n Likely strictly harder than NP-complete problems
n PSPACE-complete problems include

n Game-playing problems such as n×n chess
and checkers

n Logic problems such as whether quantified
boolean expressions are always true

n Verification problems for finite automata

