
1

�

����������	
�������
���

�������� �

Greedy Algorithms

Winter 2005
Paul Beame

�

Greedy Algorithms

n Hard to define exactly but can give general
properties
n Solution is built in small steps
n Decisions on how to build the solution are made to

maximize some criterion without looking to the
future
n Want the ‘best’ current partial solution as if the

current step were the last step

n May be more than one greedy algorithm
using different criteria to solve a given
problem

�

Greedy Algorithms

n Greedy algorithms
n Easy to produce
n Fast running times
n Work only on certain classes of problems

n Two methods for proving that greedy
algorithms do work
n Greedy algorithm stays ahead

n At each step any other algorithm will have a
worse value for the criterion

n Exchange Argument
n Can transform any other solution to the greedy

solution at no loss in quality

�

Interval Scheduling

n Interval Scheduling
n Single resource
n Reservation requests

n Of form “Can I reserve it from start time
s to finish time f?”

n s <<<< f
n Find: maximum number of requests that

can be scheduled so that no two
reservations have the resource at the
same time

�

Interval scheduling

n Formally
n Requests 1,2,…,n

n request i has start time s i and finish time f i >>>> s i
n Requests i and j are compatible iff either

n request i is for a time entirely before request j
n f i ≤≤≤≤ s j

n or, request j is for a time entirely before
request i

n f j ≤≤≤≤ s i
n Set A of requests is compatible iff every pair of

requests i,j∈ A, i≠≠≠≠j is compatible
n Goal: Find maximum size subset A of compatible

requests

�

Greedy Algorithms for Interval
Scheduling

n What criterion should we try?
n Earliest start time s i

n Shortest request time f i-s i

n Earliest finish fime f i

2

�

Greedy Algorithms for Interval
Scheduling

n What criterion should we try?
n Earliest start time s i

n Doesn’t work

n Shortest request time f i-s i
n Doesn’t work

n Even fewest conflicts doesn’t work

n Earliest finish fime f i
n Works

�

Greedy Algorithm for Interval
Scheduling

R←set of all requests
A←∅
While R≠∅ do

Choose request i∈∈∈∈R with smallest
finishing time f i

Add request i to A
Delete all requests in R that are not

compatible with request i
Return A

	

Greedy Algorithm for Interval
Scheduling

n Claim: A is a compatible set of requests and
these are added to A in order of finish time
n When we add a request to A we delete all

incompatible ones from R

n Claim: For any other set O⊆⊆⊆⊆R of compatible
requests then if we order requests in A and O
by finish time then for each k:
n If O contains a k th request then so does A and
n the finish time of the k th request in A, is ≤≤≤≤ the

finish time of the k th request in O, i.e. “ak ≤≤≤≤ ok”
where ak and ok are the respective finish times

�

Inductive Proof of Claim: ak≤≤≤≤ok

n Base Case: This is true for the first request in A since
that is the one with the smallest finish time

n Inductive Step: Suppose ak≤≤≤≤ok
n By definition of compatibility

n If O contains a k+1st request r then the start time of that
request must be after ok and thus after ak

n Thus r is compatible with the first k requests in A
n Therefore

n A has at least k+1 requests since a compatible one is
available after the first k are chosen

n r was among those considered by the greedy algorithm for
that k+1st request in A

n Therefore by the greedy choice the finish time of r which
is ok+1 is at least the finish time of that k+1st request in A
which is ak+1

��

Implementing the Greedy Algorithm

n Sort the requests by finish time
n O(nlog n) time

n Maintain current latest finish time scheduled
n Keep array of start times indexed by request

number
n Only eliminate incompatible requests as

needed
n Walk along array of requests sorted by finish times

skipping those whose start time is before current
latest finish time scheduled

n O(n) additional time for greedy algorithm

��

Exchange arguments

n Scheduling to minimize lateness
n Single resource as in interval scheduling but instead of start

and finish times request i has
n Time requirement t i which must be scheduled in a

contiguous block
n Target deadline d i by which time the request would like

to be finished
n Overall start time s

n Requests are scheduled by the algorithm into time intervals
[si,fi] such that ti=fi-si

n Lateness of schedule for request i is
n If di<<<<fi then request i is late by L i= fi-di otherwise its

lateness Li= 0
n Maximum lateness L=max i Li
n Goal: Find a schedule for all requests (values of si and fi for

each request i) to minimize the maximum lateness, L

3

��

Greedy Algorithm:
Earliest Deadline First

n Order requests in increasing order of
deadlines

n Schedule the request with the earliest
deadline as soon as the resource
becomes available

��

Greedy Algorithm:
Earliest Deadline First

Sort deadlines in increasing order

(assume wlog that d1≤≤≤≤d2≤≤≤≤…≤≤≤≤dn)
f ← s
for i←←←←1 to n to

s i ←←←←f
f i ←←←← s i+t i

f←←←←f i

end for

��

Why does this give optimal value of
maximum lateness?

n Easy observations
n This schedule has no idle time

n The overall schedule starts at time s and
finishes as soon as possible at time
s+t1+t2+…+ tn

n There is an optimal schedule with no idle time
n Shifting the requests earlier by the amount of

the idle time can only decrease maximum
lateness
(It might not improve the maximum lateness but
it certainly can’t hurt to do this.)

n There are only a finite # of schedules with no
idle time so one of them must be best

��

Exchange Argument

n We will show that if there is another
schedule O (think optimal schedule)
then we can gradually change O so that
n at each step the maximum lateness in O

never gets worse
n it eventually becomes the same as A

��

Inversions

n Inversion
n d j <<<< d i but i is scheduled before j
n Earliest deadline first has no inversions

n Claim: All schedules with no inversions and no idle
time have the same maximum lateness

n Proof
n Schedules can differ only in how they order requests with

equal deadlines
n Consider all requests having some common deadline d

n Maximum lateness of these jobs is based only on the finish
time of the last of these jobs but the set of these requests
occupy the same time segment in both schedules

n Last of these requests finishes at the same time in any
such schedule.

��

Optimal schedules and inversions

n Claim: There is an optimal schedule with no
idle time and no inversions

n Proof:
n By previous argument there is an optimal

schedule O with no idle time
n (i) If O has an inversion then it has a consecutive

pair of requests in its schedule that are inverted
i.e. d j <<<< d i but i is scheduled immediately before j
n (Simple transitivity of <, otherwise consecutive

pairs would always be scheduled in increasing
order of deadlines)

4

�	

Optimal schedules and inversions

n (ii) If d j <<<< d i but i is scheduled in O
immediately before j then swapping requests
i and j to get schedule O’ does not increase
the maximum lateness
n Lateness L j’≤≤≤≤ L j since j is scheduled earlier in O’

than in O
n Requests i and j together occupy the same total

time slot in both schedules
n All other requests k≠≠≠≠i have Lk’=Lk

n f i’=f j so L i’= f j-d i <<<< f j-d j=L j

n Maximum lateness has not increased!

�

Optimal schedules and inversions

n (iii) Eventually these swaps will produce
an optimal schedule with no inversions
n Each swap decreases the number of

inversions by 1
n There are at most n(n-1)/2 inversions

QED

��

Earliest Deadline First is optimal

n We know that
n There is an optimal schedule with no idle

time or inversions
n All schedules with no idle time or

inversions have the same maximum
lateness

n EDF produces a schedule with no idle time
or inversions

n Therefore
n EDF produces an optimal schedule

��

Optimal Caching/Paging

n Memory systems
n many levels of storage with different access times
n smaller storage has shorter access time
n to access an item it must be brought to the lowest

level of the memory system
n Consider the management problem between

adjacent levels
n Main memory with n data items from a set U
n Cache can hold k<<<<n items
n Simplest version with no direct-mapping or other

restrictions about where items can be
n Suppose cache is full initially

n Holds k data items to start with

��

Optimal Caching/Paging

n Given a memory request d from U
n If d is stored in the cache we can access it quickly
n If not then we call it a cache miss and (since the

cache is full)
n we must bring it into cache and evict some

other data item from the cache
n which one to evict?

n Given a sequence D=d1,d2,…,dm of elements
from U corresponding to memory requests

n Find a sequence of evictions (an eviction
schedule) that has as few cache misses as
possible

��

Caching Example

n n=3, k=2, U={a,b,c}

n Cache initially contains {a,b}
n D= a b c b c a b
n S= a c
n C= a b a

b c b

n This is optimal

5

��

A Note on Optimal Caching

n In real operating conditions one typically
needs an on-line algorithm
n make the eviction decisions as each memory

request arrives

n However to design and analyze these
algorithms it is also important to understand
how the best possible decisions can be made
if one did know the future
n Field of on-line algorithms compares the quality of

on-line decisions to that of the optimal schedule

n What does an optimal schedule look like?

��

Belady’s Greedy Algorithm:
Farthest-In-Future

n Given sequence D=d1,d2,…,dm

n When d i needs to be brought into the
cache evict the item that is needed
farthest in the future
n Let NextAccess i(d)=min{ j≥≥≥≥i : d j=d} be the

next point in D that item d will be requested

n Evict d such that NextAccess i(d) is largest

��

Other Algorithms

n Often there is flexibility, e.g.
n k=3, C={a,b,c}
n D= a b c d a d e a d b c
n SFIF= c b e d
n S = b c d e

n Why aren’t other algorithms better?
n Least-Frequenty-Used-In-Future?

n Exchange Argument
n We can swap choices to convert other schedules

to Farthest-In-Future without losing quality

��

Reduced Schedule

n We seemed to assume that we only brought in new items (and
evicted current items) at cache misses
n Would acting in advance would help?

n Call an eviction schedule reduced if its only evictions are of
single items at cache misses
n Farthest-In-Future produces a reduced schedule

n Given an eviction schedule S define schedule reduced(S) as
follows:

n In step i if S brought in item d that is not accessed until step j >>>> i
and evicted item e from cache then ‘pretend’ to do this eviction
leaving d in main memory until step j

n Claim: reduced(S) yields at most as many cache misses as S
does

�	

Optimal Caching

n Fix some sequence D=d1,d2,…,dm of requests
n Let SFIF be the schedule produced on this sequence

by Farthest-In-Future

n Claim: If S is any reduced schedule (for all of D) that
agrees with SFIF for (at least) the first j steps then
n there is a reduced schedule S’ that agrees with

SFIF for (at least) the first j+1 steps such that
#misses(S’) ≤ #misses(S)

n Applying this claim m times we could start with any
optimal reduced schedule S0 (which agrees with SFIF
for at least 0 steps) and produce SFIF without
increasing the number of cache misses

�

Proving the Claim

n Suppose S is a reduced schedule that agrees
with SFIF for the first j steps

n At the time of the j+1st request d j+1, S and
SFIF yield the same cache contents

n Case 1: d j+1 is in the cache
n Since both S and SFIF are reduced neither has a

miss so they agree for j+1 steps and we can set
S’=S

n Case 2: d j+1 is not in the cache
n Say that S evicts f and SFIF evicts e

n If e=f then we can take S’=S since S and SFIF
agree for j+1 steps

n What if e≠≠≠≠f?

6

��

Building S’

n NextAccess j+1(e)>NextAccess j+1(f)

n Define schedule S’ that agrees with S except that
n At step j+1 it evicts e instead of f
n The first time after step j+1 that one of the following occurs it

does something different that will result in S’ having the
same cache as S so that the rest of the simulation can take
place

n Event A: There is a request to an item g other than e or f
s.t. S evicts e

n Event B: There is a request to f

n Note: S’ will have trouble handling any access to e while it
remains in the cache under S but we won’t have to deal with
it because Event B will happen before any access to e

��

Building S’

n Event A: There is a request to an
item g other than e or f s.t. S evicts e
n In this case the cache under S’ also

doesn’t contain g (since the caches
under S and S’ can at most disagree on
e and f)

n So we have S’ evict f
n Caches now agree and S’ is exactly the

same as S for the rest
n #misses(S’)=#misses(S).

��

Building S’

n Event B: There is a request to f
n Now f is in the cache under S’ but not S
n Say S evicts item e’
n If e’=e then after this step the caches under

S’ and S are the same so we let S’ match S
for the rest

n #misses(S’)<<<<#misses(S)
n If e’≠≠≠≠e then have S’ evict e’ also and bring

in e instead
n Now cache under S’ and S agree and S’ can

match S
n #misses(S’)=#misses(S)
n But S’ is not reduced so we replace S’ by

reduce(S’)
n Reduce(S’) still agrees with SFIF for j+1 steps

��

Single-source shortest paths

n Given an (un)directed graph G=(V,E)
with each edge e having a non-negative
weight w(e) and a vertex v

n Find length of shortest paths from v to
each vertex in G

��

A greedy algorithm

n Dijkstra’s Algorithm:
n Maintain a set S of vertices whose shortest paths

are known
n initially S={s}

n Maintaining current best lengths of paths that only
go through S to each of the vertices in G
n path-lengths to elements of S will be right, to

V-S they might not be right
n Repeatedly add vertex v to S that has the shortest

path-length of any vertex in V-S
n update path lengths based on new paths

through v
��

Dijsktra’s Algorithm

Dijkstra(G,w,s)
S←{s}
d[s]←0
while S≠≠≠≠V do

of all edges e=(u,v) s.t. v∉∉∉∉S and u∈∈∈∈S select* one
with the minimum value of d[u]+w(e)

S←S∪ {v}
d[v]←d[u]+w(e)
pred[v]←u

*For each v∉S maintain d’[v]=minimum value of
d[u]+w(e) over all vertices u∈S s.t. e=(u,v) is in of G

7

��

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
210

8

0

2
4

∞∞∞∞

∞∞∞∞

∞∞∞∞

∞∞∞∞

∞∞∞∞
∞∞∞∞

∞∞∞∞

∞∞∞∞
∞∞∞∞

∞∞∞∞

��

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
210

8

0

2
4

∞∞∞∞

∞∞∞∞

∞∞∞∞

∞∞∞∞

∞∞∞∞
∞∞∞∞

∞∞∞∞

∞∞∞∞
∞∞∞∞

∞∞∞∞

Add to S

�	

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
210

8

0

2
4

∞∞∞∞

∞∞∞∞

9

∞∞∞∞

∞∞∞∞
∞∞∞∞

∞∞∞∞

∞∞∞∞
∞∞∞∞

∞∞∞∞

Update distances

�

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
210

8

0

2
4

∞∞∞∞

∞∞∞∞

9

∞∞∞∞

∞∞∞∞
∞∞∞∞

∞∞∞∞

∞∞∞∞
∞∞∞∞

∞∞∞∞

Add to S

��

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
210

8

0

2
4

∞∞∞∞

8

9

∞∞∞∞

∞∞∞∞
∞∞∞∞

∞∞∞∞

7
5

∞∞∞∞

Update distances

��

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
210

8

0

2
4

∞∞∞∞

8

9

∞∞∞∞

∞∞∞∞
∞∞∞∞

∞∞∞∞

7
5

∞∞∞∞

Add to S

8

��

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
210

8

0

2
4

∞∞∞∞

8

9

∞∞∞∞

∞∞∞∞
∞∞∞∞

∞∞∞∞

7
5

13

Update distances

��

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
210

8

0

2
4

∞∞∞∞

8

9

∞∞∞∞

∞∞∞∞
∞∞∞∞

∞∞∞∞

7
5

13

Add to S

��

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
210

8

0

2
4

∞∞∞∞

8

9

∞∞∞∞

∞∞∞∞
∞∞∞∞

∞∞∞∞

7
5

13

Update distances

��

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
210

8

0

2
4

∞∞∞∞

8

9

∞∞∞∞

∞∞∞∞
∞∞∞∞

∞∞∞∞

7
5

13

Add to S

��

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
210

8

0

2
4

16

8

9

∞∞∞∞

∞∞∞∞
∞∞∞∞

∞∞∞∞

7
5

13

Update distances

��

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
210

8

0

2
4

16

8

9

∞∞∞∞

∞∞∞∞
∞∞∞∞

∞∞∞∞

7
5

13

Add to S

9

�	

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
210

8

0

2
4

16

8

9

15

∞∞∞∞
10

∞∞∞∞

7
5

13

Update distances

�

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
210

8

0

2
4

16

8

9

15

∞∞∞∞
10

∞∞∞∞

7
5

13

Add to S

��

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
210

8

0

2
4

16

8

9

15

14

10

20

7
5

13

Update distances

��

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
210

8

0

2
4

16

8

9

15

14

10

20

7
5

13

Add to S

��

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
210

8

0

2
4

16

8

9

15

14

10

20

7
5

13

Update distances

��

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
210

8

0

2
4

16

8

9

15

14

10

20

7
5

13

Add to S

10

��

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
210

8

0

2
4

16

8

9

15

14

10

19

7
5

13

Update distances

��

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
210

8

0

2
4

16

8

9

15

14

10

19

7
5

13

Add to S

��

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
210

8

0

2
4

16

8

9

15

14

10

19

7
5

13

Update distances

��

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
210

8

0

2
4

16

8

9

15

14

10

19

7
5

13

Add to S

�	

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
210

8

0

2
4

16

8

9

15

14

10

18

7
5

13

Update distances

�

Dijkstra’s Algorithm

2

7

1

4
3

4

5

1
3

5
8

6

9
4

5
210

8

0

2
4

16

8

9

15

14

10

18

7
5

13

Add to S

11

��

Dijkstra’s Algorithm Correctness

Suppose all distances to vertices in S are correct
and u has smallest current value in V-S

d’(v)≤ d’(x)

x-v path length ≥ 0

∴distance value of vertex in V-S=length of shortest path from s
with only last edge leaving S

s

v

x
S Suppose some other

path to v and x= first vertex
on this path not in S

∴ other path is longer

Therefore adding v to S keeps correct distances
��

Dijkstra’s Algorithm

n Algorithm also produces a tree of
shortest paths to v following pred links
n From w follow its ancestors in the tree

back to v

n If all you care about is the shortest path
from v to w simply stop the algorithm
when w is added to S

��

Implementing Dijkstra’s Algorithm

n Need to
n keep current distance values for nodes in

V-S
n find minimum current distance value

n reduce distances when vertex moved to S

��

Data Structure Review

n Priority Queue:
n Elements each with an associated key
n Operations

n Insert
n Find-min

n Return the element with the smallest key

n Delete-min
n Return the element with the smallest key and delete it from the data

structure

n Decrease-key
n Decrease the key value of some element

n Implementations
n Arrays: O(n) time find/delete-min, O(1) time insert/

decrease-key
n Heaps: O(log n) time insert/decrease-key/delete-min, O(1) time

find-min

��

Dijkstra’s Algorithm with Priority
Queues

n For each vertex u not in tree maintain cost of
current cheapest path through tree to u
n Store u in priority queue with key = length

of this path
n Operations:

n n-1 insertions (each vertex added once)
n n-1 delete-mins (each vertex deleted once)

n pick the vertex of smallest key, remove it from
the priority queue and add its edge to the graph

n <m decrease-keys (each edge updates one
vertex)

��

Dijskstra’s Algorithm with Priority
Queues

n Priority queue implementations
n Array

n insert O(1), delete-min O(n), decrease-key O(1)
n total O(n+n2+m)=O(n2)

n Heap
n insert, delete-min, decrease-key all O(log n)
n total O(m log n)

n d-Heap (d=m/n)
n insert, decrease-key O(logm/n n)
n delete-min O((m/n) logm/n n)
n total O(m logm/n n)

12

��

Minimum Spanning Trees (Forests)

n Given an undirected graph G=(V,E) with
each edge e having a weight w(e)

n Find a subgraph T of G of minimum
total weight s.t. every pair of vertices
connected in G are also connected in T
n if G is connected then T is a tree otherwise

it is a forest

��

Weighted Undirected Graph

2

7

-1

4
3

4

5

1
3

5
8

6

9
4

5
79

8

1

2
3

10

5

4

9

12

8

13

6
7

11

�	

First Greedy Algorithm

n Prim’s Algorithm:
n start at a vertex s

n add the cheapest edge adjacent to s
n repeatedly add the cheapest edge that

joins the vertices explored so far to the rest
of the graph

n Exactly like Dijsktra’s Algorithm but with a
different metric

�

Dijsktra’s Algorithm

Dijkstra(G,w,s)
S←{s}
d[s]←0
while S≠≠≠≠V do

of all edges e=(u,v) s.t. v∉∉∉∉S and u∈∈∈∈S select* one
with the minimum value of d[u]+w(e)

S←S∪ {v}
d[v]←d[u]+w(e)
pred[v]←u

*For each v∉S maintain d’[v]=minimum value of
d[u]+w(e) over all vertices u∈S s.t. e=(u,v) is in of G

��

Prim’s Algorithm

Prim(G,w,s)
S←{s}

while S≠≠≠≠V do
of all edges e=(u,v) s.t. v∉∉∉∉S and u∈∈∈∈S select* one
with the minimum value of w(e)

S←S∪ {v}

pred[v]←u

*For each v∉S maintain small[v]=minimum value of w(e)
over all vertices u∈S s.t. e=(u,v) is in of G

��

Second Greedy Algorithm

n Kruskal’s Algorithm
n Start with the vertices and no edges

n Repeatedly add the cheapest edge that
joins two different components. i.e. that
doesn’t create a cycle

13

��

Why greed is good

n Definition: Given a graph G=(V,E), a cut of
G is a partition of V into two non-empty
pieces, S and V-S

n Lemma: For every cut (S,V-S) of G, there is
a minimum spanning tree (or forest)
containing any cheapest edge crossing the
cut, i.e. connecting some node in S with
some node in V-S.
n call such an edge safe

��

Cuts and Spanning Trees

2

7

-1

4
3

4

5

1
3

5
8

6

9
4

5
79

8

1

2
3

10

5

4

9

12

8

13

6
7

11

��

The greedy algorithms always
choose safe edges

n Prim’s Algorithm
n Always chooses cheapest edge from

current tree to rest of the graph

n This is cheapest edge across a cut which
has the vertices of that tree on one side.

��

Prim’s Algorithm

2

7

-1

4
3

4

5

1
3

5
8

6

9
4

5
79

8

1

2
3

10

5

4

9

12

8

13

6
7

11

��

The greedy algorithms always
choose safe edges

n Kruskal’s Algorithm
n Always chooses cheapest edge connecting

two pieces of the graph that aren’t yet
connected

n This is the cheapest edge across any cut
which has those two pieces on different
sides and doesn’t split any current pieces.

��

Kruskal’s Algorithm

2

7

-1

4
3

4

5

1
3

5
8

6

9
4

5
79

8

1

2
3

10

5

4

9

12

8

13

6
7

11

14

�	

Kruskal’s Algorithm

2

7

-1

4
3

4

5

1
3

5
8

6

9
4

5
79

8

1

2
3

10

5

4

9

12

8

13

6
7

11

�

Proof of Lemma:
An Exchange Argument

Suppose you have an MST not using cheapest edge e

e
u

v

Endpoints of e, u and v must be connected in T

��

Proof of Lemma

Suppose you have an MST not using cheapest edge e

e
u

v

Endpoints of e, u and v must be connected in T
��

Proof of Lemma

Suppose you have an MST not using cheapest edge e

e
u

v

Endpoints of e, u and v must be connected in T

h

��

Proof of Lemma

Suppose you have an MST not using cheapest edge e

e
u

v

Endpoints of e, u and v must be connected in T

w(e)≤w(h)

h

��

Proof of Lemma

Replacing h by e does not increase weight of T

e
u

v

h

w(e)≤w(h)

All the same points are connected by the new tree

15

��

Kruskal’s Algorithm
Implementation & Analysis

n First sort the edges by weight O(m log m)
n Go through edges from smallest to largest

n if endpoints of edge e are currently in
different components

n then add to the graph
n else skip

n Union-find data structure handles last part

n Total cost of last part: O(m α(n)) where
α(n)<< log m

n Overall O(m log n)
��

Union-find disjoint sets data
structure

n Maintaining components
n start with n different components

n one per vertex
n find components of the two endpoints of e

n 2m finds

n union two components when edge
connecting them is added
n n-1 unions

��

Prim’s Algorithm with Priority
Queues

n For each vertex u not in tree maintain current
cheapest edge from tree to u
n Store u in priority queue with key = weight

of this edge
n Operations:

n n-1 insertions (each vertex added once)
n n-1 delete-mins (each vertex deleted once)

n pick the vertex of smallest key, remove it from
the p.q. and add its edge to the graph

n <m decrease-keys (each edge updates one
vertex)

��

Prim’s Algorithm with Priority
Queues

n Priority queue implementations
n Array

n insert O(1), delete-min O(n), decrease-key O(1)
n total O(n+n2+m)=O(n2)

n Heap
n insert, delete-min, decrease-key all O(log n)
n total O(m log n)

n d-Heap (d=m/n)
n insert, decrease-key O(logm/n n)
n delete-min O((m/n) logm/n n)
n total O(m logm/n n)

�	

Boruvka’s Algorithm (1927)

n A bit like Kruskal’s Algorithm
n Start with n components consisting of a

single vertex each
n At each step, each component chooses its

cheapest outgoing edge to add to the
spanning forest
n Two components may choose to add the

same edge
n Useful for parallel algorithms since

components may be processed (almost)
independently

	

Many other minimum spanning tree
algorithms, most of them greedy

n Cheriton & Tarjan
n O(m loglog n) time using a queue of

components

n Chazelle
n O(m α(m) log α(m)) time

n Incredibly hairy algorithm

n Karger, Klein & Tarjan
n O(m+n) time randomized algorithm that

works most of the time

16

	�

Applications of Minimum Spanning
Tree Algorithms

n Minimum cost network design:
n Build a network to connect all locations

{v1,…,vn}
n Cost of connecting v i to vj is w(v i,vj)>0
n Choose a collection of links to create that

will be as cheap as possible
n Any minimum cost solution is an MST

n If there is a solution containing a cycle
then we can remove any edge and get a
cheaper solution

	�

Applications of Minimum Spanning
Tree Algorithms

n Maximum Spacing Clustering
n Given

n a collection U of n objects {p1,…,pn}
n Distance measure d(p i,p j) satisfying

n d(pi,pi)=0
n d(pi,pj)>0 for i≠j
n d(pi,pj)=d(pj,pi)

n Positive integer k≤n
n Find a k-clustering, i.e. partition of U into k clusters

C1,…,Ck, such that the spacing between the
clusters is as large possible where

spacing = min{d(pi,pj): p i and p j in different
clusters}

	�

Greedy Algorithm

n Start with n clusters each consisting of a single point
n Repeatedly find the closest pair of points in different

clusters under distance d and merge their clusters
until only k clusters remain

n Gets the same components as Kruskal’s Algorithm
does!
n The sequence of closest pairs is exactly the MST

n Alternatively we could run Kruskal’s algorithm once
and for any k we could get the maximum spacing
k-clustering by deleting the k-1 most expensive
edges

	�

Proof that this works

n Removing the k-1 most expensive edges from an
MST yields k components C1,…,Ck and the spacing
for them is precisely the cost d* of the k-1st most
expensive edge in the tree

n Consider any other k-clustering C’1,…,C’k
n Since they are different and cover the same set of points

there is some pair of points pi,pj such that pi,pj are in some
cluster Cr but pi, pj are in different clusters C’s and C’ t

n Since p i,p j ∈∈∈∈Cr, p i and pj have a path between them
all of whose edges have distance at most d*

n This path must cross between clusters in the C’
clustering so the spacing in C’ is at most d*

