CSE 421: Introduction to

‘ Algorithms

Network Flow

Winter 2005
Paul Beame

_ Bipartite Matching

n  Given: A bipartite graph G=(V,E)
» MOE is a matching in G iff no two edges
in M share a vertex

n  Goal: Find a matching M in G of
maximum possible size

‘ Bipartite Matching

. Bipartite Matching

| ‘ The Network Flow Problem
)

» How much stuff can flow from s to t?

Bipartite matching as a special case

. of flow




| | Net Flow: Formal Definition

Given: Find:
A digraph G = (V,E) A flow function f: E - R s.t., for all
Two vertices s,tinv ~ WV:
(source & sink) .+ 0=f(u,v) <c(u,v)
A capacity C(U,V) >0 [Capacity Constraint]
for each (u,v) O E o ifu#st, ie. fou(u)=fin(u)
(and c(u,v) =0 for all [Flow Conservation]

non-edges (u.v) Maximizing total flow v(f) = foui(s)

Notation:
IHO)S Zez(u‘v)msf(“’v) vy = Ze:(v,w)[Ef(v'W)

| Example: A Flow Function

flow/capacity, not .66...

fin(u):f(S,u):Z:f(u ,t):f‘)“t(u)

J ‘ Example: A Flow Function

» Not shown: f(u,v) if =0
» Note: max flow = 4 since
fis a flow function, with v(f) =4

| Max Flow via a Greedy Alg?

While thereisans — tpathin G
Pick such a path, p
Find c, the min capacity of any edge in p
Subtract ¢ from all capacities on p
Delete edges of capacity O

n This does NOT always find a max flow:

If picks b —a -t
first, flow stuck at 2.
But flow 3 possible.

10

9
| # | year | discoverer(s) bound
[ 1] 1951 [ Dantzig O(n?mU)
[ 2] 1955 | Ford & Fulkerson O(nmU)
[ 31970 | Dinitz O(nm?)
Edmonds & Karp
[ 4] 1970 | Dinitz O(n’m)
[ 5 | 1972 | Edmonds & Karp O(mTlog U)
Dinitz,
[ 1973 | Dinitz O(nmlogU)
Gabow
|7 1974 | Karzanov %)
|8 1977 | Cherkassky (n? Jm)
|9 1980 | Galil & Naamad (nm log” n)
10 | 1983 | Sieator & Tarjan (nmlogn)
T oldberg & Tarjan ROJ))
2198 ja & Orfin (nm + n? TogU) n=# of vertices
[B] ja et al. :ﬂﬂmﬂ)l m= # of edges
14 1989 | Cheriyan & Hagerup | E(nm + n’log? n) _
P G & 1 U = Max capacity
[ 16 [ 1990 | Alon
[17 | 1992 | King et al.
18 | 1993 | Phillips & Westbrook
10 [ 1994 | King et al.
20| pes{Gokdberdoian Source: Goldberg & Rao,
FoCs 97

11

Greed Revisited:

i Residual Graph & Augmenting Path

Residual Graph




Greed Revisited:

| | An Augmenting Path

New Residual Graph

| Residual Capacity

n The residual capacity (w.r.t. f) of (u,v) is
cq(u,v) = c(u,v) - f(u,v) if f(u,v)<c(u,v)
and c(u,v)=f(v,u) if f(v,u)>0

n e.g. C(s,b)=7; ci(a,x) = 1; c(x,a) = 3

Residual Graph
& Augmenting Paths

i

» The residual graph (w.r.t. f) is the graph
G; = (V,Ey), where
E ={(uv)|c(uv)>0}
» Two kinds of edges
« Forward edges
n f(u,v)<c(u,v) so cy(u,v)=c(u,v)-f(u,v)>0
. Backward edges
n f(u,v)>0so c(v,u) = -f(v,u)=f(u,v)>0
» An augmenting path (w.r.t. f) is a simple
S - t pathin G;.

15

| A Residual Network

‘ An Augmenting Path

3/4

| Augmenting A Flow

augment(f,P)
Cp—Miny o C(u,v)  “bottleneck(P)”
for each eOP
if e is a forward edge then
increase f(e) by cp
else (e is a backward edge)
decrease f(e) by cp
endif
endfor
return(f)




. | Augmenting A Flow

Claim 7.1

If G; has an augmenting path P, then the
function f'=augment(f,P) is a legal flow.

Proof:

» f" and f differ only on the edges of P so
only need to consider such edges (u,v)

| Proof of Claim 7.1

n If (u,v) is a forward edge then

f'(u,v)=f(u,v)+cp < f(u,v)+cy(u,v)
= f(u,v)+c(u,v)-f(u,v)
=c(u,v)

n If (u,v) is a backward edge then f and f’
differ on flow along (v,u) instead of (u,v)
f'(v,u)=f(v,u)-cp 2 f(v,u)-cq(u,v)

= f(v,u)-f(v,u)=0

» Other conditions like flow conservation

still met

21

| Ford-Fulkerson Method

Start with f=0 for every edge

While G; has an augmenting path,
augment

n Questions:
» Does it halt?
» Does it find a maximum flow?
» How fast?

Observations about Ford-Fulkerson

| ‘ Algorithm

n At every stage the capacities and flow values
are always integers (if they start that way)
» The flow value v(f")=v(f)+c>v(f) for
f’=augment(f,P)
» Since edges of residual capacity O do not appear
in the residual graph

n Let C=X e c(s,u)
" v(f)<C
» F-F does at most C rounds of augmentation since

flows are integers and increase by at least 1 per
step

23

. Running Time of Ford-Fulkerson

n For f:O, Gf:G

n Finding an augmenting path in G; is
graph search O(n+m)=0(m) time

n Augmenting and updating G; is O(n)
time

» Total O(mC) time

n Does is find a maximum flow?

» Need to show that for every flow f that isn’t
maximum G; contains an s-t-path




| | Cuts

n A partition (A,B) of Vis an s-t-cut if
n SOA, tOB
» Capacity of cut (A,B) is ¢(A,B) = c(u,V)

{s,b,c}
c=15

. Convenient Definition

n fo“t(A):ZvDA‘ woa T (V,w)

n fin(A):zvnA, uoa F(U,V)

| ‘ Claims 7.6 and 7.8

» For any flow f and any cut (A,B),
» the net flow across the cut equals the total
flow, i.e., v(f) = fout(A)-fin(A), and
» the net flow across the cut cannot exceed
the capacity of the cut,
i.e. fout(A)-fin(A) < c(A,B)

n Corollary : 7/0——
@ 1 CutCap =3
Net Flow = 1

Max flow < Min cut .
1 CutCap =2
Net Flow = 1
A .

| Proof of Claim 7.6

Consider a set A with sOA, tOA

fout(A)-fin(A) =2, s oa F(VW)-Zyga upa f (ULV)
We can add flow values for edges with both
endpoints in A to both sums and they would cancel
out so
fout(A)-fin(A)= ZVI:IA, wov f (VvW)‘ZvDA, wov F(UV)

= Zooa oy F (VW) - Zgy F(UV))

=Z, g ot (v) - (V)
:foul(s)_fln(s)

since all other vertices have fout(v)=fin(v)
v(f) = fout(s) and fin(s)=0

B

| ‘ Proof of Claim 7.8

o v(f)=fout(A)-fin(A)
< fout(A)

= ZVEIA, woa F(V,W)
< 2, 0a woa C(V,W)

< Z,oa, wos C(V.W)
=c(A,B)

29

| Max Flow / Min Cut Theorem

Claim 7.9 For any flow f, if G; has no
augmenting path then there is some s-t-cut
(A,B) such that v(f)=c(A,B) (proof on next slide)

We know by Claims 7.6 & 7.8 that any flow f’ satisfies
v(f") < c(A,B) and we know that F-F runs for finite
time until it finds a flow f satisfying conditions of
Claim 7.9

» Therefore by 7.9 for any flow ', v(f’) <v(f)

Corollary (1) F-F computes a maximum flow in G
(2) For any graph G, the value v(f) of a maximum
flow = minimum capacity c(A,B) of any s-t-cutin G

B




| Claim 7.9

Let A={u|Oan pathin G;fromstou}
B=V-A; sOAtOB

saturated
f(u,v)=c(u,v)

This is true for every edge crossing the cut, i.e.
fU(A) = f(u,v) =) c(u,v) =c(A,B) and fin(A)=0 so
i3 i v(f)=foui(A)-fin(A)=c(A B)

viB viB

31

Flow Integrality Theorem

If all capacities are integers
» The max flow has an integer value

» Ford-Fulkerson method finds a max flow in
which f(u,v) is an integer for all edges (u,v)

| ‘ Corollaries & Facts

» If Ford-Fulkerson terminates, then it's
found a max flow.

n It will terminate if c(e) integer or rational
(but may not if they're irrational).

» However, may take exponential time,
even with integer capacities:

= P«
N

¢ =10° say

33

Bipartite matching as a special case

. of flow

Integer flows implies each flow is just a subset of the edges
Therefore flow corresponds to a matching
O(mC)=0(nm) running time

. ‘ Capacity-scaling algorithm

» General idea:
» Choose augmenting paths P with ‘large’
capacity cp
» Can augment flows along a path P by any
amount b<c,
» Ford-Fulkerson still works

» Get a flow that is maximum for the high-
order bits first and then add more bits later

35

. Capacity Scaling




| Capacity Scaling

37

. Capacity Scaling Bit 1

Capacity on each edge is at most 1

1/1 () 1/1
/1

0 1

O(nm) time

39

Residual capacity across min cut is at most m

40

| ‘ Capacity Scaling Bit 2

N llfV

: 10/10 :

Residual capacity across min cut is at most m

= O(m) augmentations

41

| Capacity Scaling Bit 3

010/100

Residual capacity across min cut is at most m

42




. | Capacity Scaling Bit 3

010/100

101/101

011/011

11/111
Dlou/Lgy 1007100 fy“l\
01110 1100113”*‘3/

: 101/101 :

After O(m) augmentations

43

. Capacity Scaling Final

44

‘ ‘ Capacity Scaling Min Cut

45

. Total time for capacity scaling

n log, U rounds where U is largest capacity

» At most m augmentations per round

» Letc; be the capacities used in the it" round and f;
be the maxflow found in the it round

» For any edge (u,v), ¢;,,(u,v) < 2c;(u,v)+1
n i+18tround starts with flow f=2f;
» Let (A,B) be a min cut from the it round

» v(f)=c;(A,B) so v(f)=2c,(A,B)
n V(fi,1) < ¢i.1(A,B) < 2¢(A,B)+m =y(f)+m

n O(m) time per augmentation
n Total time O(m2 log U)

46

‘ ‘ Edmonds-Karp Algorithm

» Use a shortest augmenting path
(via Breadth First Search in residual graph)

» Time: O(n m?)

47

| BFS/Shortest Path Lemmas

Distance from s in G; is never reduced by:

Deleting an edge

Proof: no new (hence no shorter) path created
Adding an edge (u,v), provided v is nearer
than u

Proof: BFS is unchanged, since v visited before
(u,v) examined

"< aback edge

48




| Key Lemma

Let f be a flow, G; the residual graph, and
P a shortest augmenting path. Then no
vertex is closer to s after augmentation
along P.

Proof: Augmentation along P only deletes
forward edges, or adds back edges that
go to previous vertices along P

49

Augmentation vs BFS

G: Gy

. ‘ Theorem

The Edmonds-Karp Algorithm performs O(mn) flow
augmentations

Proof:
Call (u,v) critical for augmenting path P if it's closest to
s having min residual capacity
It will disappear from G; after augmenting along P

In order for (u,v) to be critical again the (u,v) edge
must re-appear in G; but that will only happen
when the distance to u has increased by 1

It won’t be critical again until farther from s

so each edge critical at most n times
51

. Corollary

» Edmonds-Karp runs in O(nm?) time

Project Selection

: ‘ a.k.a. The Strip Mining Problem

n Given
» a directed acyclic graph G=(V,E)
representing precedence constraints on
tasks (a task points to its predecessors)

n a profit value p(v) associated with each
task vV (may be positive or negative)

n Find

» a set A0V of tasks that is closed under
predecessors, i.e. if (u,v)JE and ulA then

vOA, that maximizes Profit(A)=2,, p(v)

53

. Extended Graph
©)

A
@?@‘%
v




‘ | Extended Graph G’

6

For each vertex v

If p(v)=0 add (s,v) edge
with capacity p(v)

If p(v)<0 add (v,t) edge
with capacity —p(v)

55

| Extended Graph G’

» Want to arrange capacities on edges of G so that for
minimum s-t-cut (S,T) in G, the set A=S-{s}
» satisfies precedence constraints
» has maximum possible profitin G

Cut capacity with S={s} is just C=Z.,,. w20 P(V)

n Profit(A) < C for any set A
To satisfy precedence constraints don’t want any
original edges of G going forward across the
minimum cut

» That would correspond to a task in A=S-{s} that had a

predecessor not in A=S-{s}

Set capacity of each of these edges to C+1

» The minimum cut has size at most C

57

. Project Selection

n Claim Any s-t-cut (S,T) in G’ such that
A=S-{s} satisfies precedence constraints has
capacity

¢(S,T)=C - Z,ga p(V) = C - Profit(A)

B

Corollary A minimum cut (S,T) in G’ yields
an optimal solution A=S-{s} to the profit
selection problem

Algorithm Compute maximum flow f in G’,
find the set S of nodes reachable from s in G’;
and return S-{s}

B

| ‘ Proof of Claim

» A=S-{s} satisfies precedence constraints

No edge of G crosses forward out of A by our
choice of capacities

Only forward edges cut are of the form (v,t) for
vOA or (s,v) for vOOA

The (v,t) edges for vOA contribute
Zv|:|A:p(v)<o pv) =- Z\/|:|A:p(v)<o p(v)
The (s,v) edges for vOA contribute
Z\/I:IA: p(v)20 p(V):c'ZvEIA: p(v)20 p(v)
Therefore the total capacity of the cut is
c(S,T) = C - Z,ga p(v) =C-Profit(A)

59

10



