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Network Flow

Winter 2005
Paul Beame
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Bipartite Matching

n Given: A bipartite graph G=(V,E)
n M⊆⊆⊆⊆E is a matching in G iff no two edges 

in M share a vertex

n Goal: Find a matching M in G of   
maximum possible size
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Bipartite Matching

�

Bipartite Matching

�

n How much stuff can flow from s to t?

The Network Flow Problem
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Bipartite matching as a special case 
of flow
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Net Flow: Formal Definition

Given:
A digraph G = (V,E)
Two vertices s,t in V

(source & sink)
A capacity c(u,v) ≥ 0

for each (u,v) ∈ E
(and c(u,v) = 0 for all      
non-edges (u,v))

Find:
A flow function f: E → R s.t., for all 
u,v:

n 0 ≤≤≤≤ f(u,v) ≤ c(u,v)
[Capacity Constraint]

n if u ≠ s,t, i.e. fout(u)=f in(u)
[Flow Conservation]

Maximizing total flow ν(f) = fout(s)

Notation:
out

e (v ,w ) E
f (v) f (v, w )

= ∈
= �in

e (u ,v ) E
f (v) f (u, v)

= ∈
= �

�

f in(u)=f(s,u)=2=f(u,t)=fout(u)

Example: A Flow Function

s u t2/2 2/3

flow/capacity, not .66...

	

n Not shown: f(u,v) if = 0

n Note:  max flow ≥ 4 since
f is a flow function, with ν(f) = 4

Example: A Flow Function
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Max Flow via a Greedy Alg?

While there is an s → t path in G
Pick such a path, p
Find c, the min capacity of any edge in p
Subtract c from all capacities on p
Delete edges of capacity 0

n This does NOT always find a max flow:
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If pick s →b →a →t
first, flow stuck at 2.
But flow 3 possible.
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A Brief History of Flow

n = # of vertices
m= # of edges
U = Max capacity

Source: Goldberg & Rao, 
FOCS ‘97
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Greed Revisited:
Residual Graph & Augmenting Path
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Greed Revisited:
An Augmenting Path
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Residual Capacity

n The residual capacity (w.r.t. f) of (u,v) is 
cf(u,v) = c(u,v) - f(u,v) if f(u,v)≤c(u,v) 
and cf(u,v)=f(v,u) if f(v,u)>0

n e.g. cf(s,b)=7; cf(a,x) = 1; cf(x,a) = 3

4/5

6

7

3/4

1/3

4

1

5

3/3

7

1/61/4

s

a

b

c

x

y

z

t

��

Residual Graph
& Augmenting Paths

n The residual graph (w.r.t. f) is the graph 
Gf = (V,Ef), where                                    

Ef = { (u,v) | c f(u,v) > 0 }
n Two kinds of edges 

n Forward edges 
n f(u,v)<c(u,v) so c f(u,v)=c(u,v)-f(u,v)>0

n Backward edges 
n f(u,v)>0 so  c f(v,u) ≥ -f(v,u)=f(u,v)>0

n An augmenting path (w.r.t. f) is a simple 
s →→→→ t path in Gf.
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A Residual Network
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An Augmenting Path
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Augmenting A Flow

augment(f,P)
cP←min(u,v)∈∈∈∈P c f(u,v)     “bottleneck(P)”
for each e∈∈∈∈P

if e is a forward edge then
increase f(e) by cP

else (e is a backward edge)
decrease f(e) by cP

endif
endfor
return(f)
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Augmenting A Flow
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Claim 7.1

If Gf has an augmenting path P, then the 
function f’=augment(f,P) is a legal flow.

Proof: 
n f’ and f differ only on the edges of P so 

only need to consider such edges (u,v)

��

Proof of Claim 7.1

n If (u,v) is a forward edge then 
f’(u,v)=f(u,v)+cP ≤≤≤≤ f(u,v)+cf(u,v) 

= f(u,v)+c(u,v)-f(u,v)  
=c(u,v)

n If (u,v) is a backward edge then f and f’
differ on flow along (v,u) instead of (u,v)
f’(v,u)=f(v,u)-cP ≥≥≥≥ f(v,u)-cf(u,v)            

= f(v,u)-f(v,u)=0
n Other conditions like flow conservation 

still met

��

Ford-Fulkerson Method

Start with f=0 for every edge

While Gf has an augmenting path, 
augment

n Questions:
n Does it halt?

n Does it find a maximum flow?
n How fast?

��

Observations about Ford-Fulkerson
Algorithm

n At every stage the capacities and flow values 
are always integers (if they start that way)

n The flow value νννν(f’)=νννν(f)+cP>νννν(f) for 
f’=augment(f,P)
n Since edges of residual capacity 0 do not appear 

in the residual graph

n Let C=ΣΣΣΣ(s,u)∈∈∈∈E c(s,u)
n νννν(f)≤C
n F-F does at most C rounds of augmentation since 

flows are integers and increase by at least 1 per 
step

��

Running Time of Ford-Fulkerson

n For f=0,  Gf=G
n Finding an augmenting path in Gf is 

graph search O(n+m)=O(m) time
n Augmenting and updating Gf is O(n)

time
n Total O(mC) time
n Does is find a maximum flow?

n Need to show that for every flow f that isn’t 
maximum Gf contains an s-t-path
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Cuts

n A partition (A,B) of V is an s-t-cut if 

n s∈∈∈∈A, t∈∈∈∈B
n Capacity of cut (A,B) is

∈
∈

=�
u A
v B

c(A,B) c(u,v)
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Convenient Definition

n fout(A)=ΣΣΣΣv∈∈∈∈A, w∉∉∉∉A f (v,w)

n f in(A)=ΣΣΣΣv∈∈∈∈A, u∉∉∉∉A f (u,v)
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Claims 7.6 and 7.8

n For any flow f and any cut (A,B),
n the net flow across the cut equals the total 

flow, i.e., νννν(f) = fout(A)-f in(A), and   
n the net flow across the cut cannot exceed 

the capacity of the cut,                                 
i.e. fout(A)-f in(A) ≤ c(A,B)

n Corollary :
Max flow ≤ Min cut

1s

t
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Cut Cap  = 3
Net Flow = 1

Cut Cap  = 2
Net Flow = 1
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Proof of Claim 7.6

n Consider a set A with s∈∈∈∈A, t∉∉∉∉A
n fout(A)-f in(A) =ΣΣΣΣv∈∈∈∈A, w∉∉∉∉A f (v,w)-ΣΣΣΣv∈∈∈∈A, u∉∉∉∉A f (u,v)
n We can add flow values for edges with both 

endpoints in A to both sums and they would cancel 
out so

n fout(A)-f in(A)= ΣΣΣΣv∈∈∈∈A, w∈∈∈∈V f (v,w)-ΣΣΣΣv∈∈∈∈A, u∈∈∈∈V f (u,v)   
= ΣΣΣΣv∈∈∈∈A (ΣΣΣΣw∈∈∈∈V f (v,w) - ΣΣΣΣu∈∈∈∈V f (u,v))             
=ΣΣΣΣv∈∈∈∈A fout (v) - f in(v)                       
=fout(s)-f in(s)

since all other vertices have fout(v)=f in(v)
n νννν(f) = fout(s) and f in(s)=0

�	

Proof of Claim 7.8

n νννν(f)=fout(A)-f in(A)                   
≤ fout(A)                                       

= ΣΣΣΣv∈∈∈∈A, w∉∉∉∉A f (v,w)                                  

≤ ΣΣΣΣv∈∈∈∈A, w∉∉∉∉A c(v,w)

≤ ΣΣΣΣv∈∈∈∈A, w∈∈∈∈B c(v,w) 
=c(A,B)

�


Max Flow / Min Cut Theorem

Claim 7.9 For any flow f, if Gf has no 
augmenting path then there is some s-t-cut
(A,B) such that νννν(f)=c(A,B)  (proof on next slide)

n We know by Claims 7.6 & 7.8 that any flow f’ satisfies 
νννν(f’) ≤ c(A,B) and we know that F-F runs for finite 
time until it finds a flow f satisfying conditions of 
Claim 7.9
n Therefore by 7.9 for any flow f’, νννν(f’) ≤νννν(f)

n Corollary (1) F-F computes a maximum flow in G

(2) For any graph G, the value νννν(f) of a maximum 
flow = minimum capacity c(A,B) of any s-t-cut in G
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Claim 7.9

Let A = { u | ∃ an path in Gf from s to u }
B = V - A;  s ∈∈∈∈ A, t ∈∈∈∈ B

This is true for every edge crossing the cut, i.e.  
and fin(A)=0 so   

νννν(f)=fout(A)-f in(A)=c(A,B)

s t

A         B

u v

∈ ∈
∈ ∈

= = =� �
out

u A u A
v B v B

f A f u,v c u,v c A,B( ) ( ) ( ) ( )

w

saturated
f(u,v)=c(u,v)

no flow
f(w,u)=0x
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Flow Integrality Theorem

If all capacities are integers
n The max flow has an integer value

n Ford-Fulkerson method finds a max flow in 
which f(u,v) is an integer for all edges (u,v)

ts
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0.5/1

1/1
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Corollaries & Facts

n If Ford-Fulkerson terminates, then it’s 
found a max flow.

n It will terminate if c(e) integer or rational
(but may not if they’re irrational).

n However, may take exponential time, 
even with integer capacities:
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Bipartite matching as a special case 
of flow
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Therefore flow corresponds to a matching

O(mC)=O(nm) running time
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Capacity-scaling algorithm

n General idea:
n Choose augmenting paths P with ‘large’ 

capacity cP

n Can augment flows along a path P by any 
amount b≤≤≤≤cP

n Ford-Fulkerson still works
n Get a flow that is maximum for the high-

order bits first and then add more bits later
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Capacity Scaling
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Capacity Scaling

101

110

111

100

011

100

001

101

011

111

110100

s

a

b

c

x

y

z

t

��

Capacity Scaling Bit 1
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1/111

Capacity Scaling Bit 1
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Capacity Scaling Bit 2
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Capacity Scaling Bit 2
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Capacity Scaling Bit 3
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Capacity Scaling Bit 3
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Capacity Scaling Final
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Capacity Scaling Min Cut
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Total time for capacity scaling

n log2 U rounds where U is largest capacity

n At most m augmentations per round
n Let c i be the capacities used in the ith round and f i

be the maxflow found in the ith round
n For any edge (u,v), c i+1(u,v) ≤ 2c i(u,v)+1

n i+1st round starts with flow  f = 2 f i
n Let (A,B) be a min cut from the ith round

n νννν(f i)=c i(A,B) so νννν(f)=2c i(A,B)
n νννν(f i+1) ≤ c i+1(A,B) ≤ 2c i(A,B)+m =νννν(f)+m

n O(m) time per augmentation

n Total time O(m2 log U)

��

Edmonds-Karp Algorithm

n Use a shortest augmenting path 
(via Breadth First Search in residual graph)

n Time: O(n m2)

��

BFS/Shortest Path Lemmas

Distance from s in Gf is never reduced by:
• Deleting an edge

Proof: no new (hence no shorter) path created

• Adding an edge (u,v), provided v is nearer 
than u
Proof: BFS is unchanged, since v visited before 
(u,v) examined

s

v

u

a back edge
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Key Lemma

Let f be a flow, Gf the residual graph, and 
P a shortest augmenting path.  Then no 
vertex is closer to s after augmentation 
along P.

Proof: Augmentation along P only deletes 
forward edges, or adds back edges that 
go to previous vertices along P

�


Augmentation vs BFS
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Theorem

The Edmonds-Karp Algorithm performs O(mn) flow 
augmentations

Proof: 
Call (u,v) critical for augmenting path P if it’s closest to 
s having min residual capacity

It will disappear from Gf after augmenting along P

In order for (u,v) to be critical again the (u,v) edge             
must re-appear in Gf but that will only happen 

when the distance to u has increased by 1 

It won’t be critical again until farther from s
so each edge critical at most n times

��

Corollary

n Edmonds-Karp runs in O(nm2) time
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Project Selection
a.k.a. The Strip Mining Problem

n Given
n a directed acyclic graph G=(V,E)

representing precedence constraints on 
tasks (a task points to its predecessors)

n a profit value p(v) associated with each 
task v∈∈∈∈V (may be positive or negative)

n Find
n a set A⊆⊆⊆⊆V of tasks that is closed under 

predecessors, i.e. if (u,v)∈E and u∈∈∈∈A then 
v∈∈∈∈A, that maximizes Profit(A)=ΣΣΣΣv∈∈∈∈A p(v)
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Extended Graph
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Extended Graph G’
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p(10)For each vertex v
If p(v)≥0 add (s,v) edge 

with capacity p(v)
If p(v)<0 add (v,t) edge 

with capacity –p(v)
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Extended Graph G’

n Want to arrange capacities on edges of G so that for 
minimum s-t-cut (S,T) in G’, the set A=S-{s}
n satisfies precedence constraints 
n has maximum possible profit in G

n Cut capacity with S={s} is just C=ΣΣΣΣv: p(v)≥≥≥≥0 p(v)
n Profit(A) ≤ C for any set A

n To satisfy precedence constraints don’t want any 
original edges of G going forward across the 
minimum cut
n That would correspond to a task in A=S-{s} that had a 

predecessor not in A=S-{s}

n Set capacity of each of these edges to C+1
n The minimum cut has size at most C
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Extended Graph G’
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Project Selection

n Claim Any s-t-cut (S,T) in G’ such that    
A=S-{s} satisfies precedence constraints has 
capacity                                                   

c(S,T)=C - Σv∈∈∈∈A p(v) = C - Profit(A)

n Corollary A minimum cut (S,T) in G’ yields 
an optimal solution A=S-{s} to the profit 
selection problem

n Algorithm Compute maximum flow f in G’, 
find the set S of nodes reachable from s in G’ f
and return S-{s}

�	

Proof of Claim

n A=S-{s} satisfies precedence constraints 
n No edge of G crosses forward out of A by our 

choice of capacities
n Only forward edges cut are of the form (v,t) for 

v∈∈∈∈A or (s,v) for v∉∉∉∉A
n The (v,t) edges for v∈∈∈∈A contribute                

Σv∈∈∈∈A:p(v)<<<<0 -p(v) = - Σv∈∈∈∈A:p(v)<<<<0 p(v) 
n The (s,v) edges for v∉∉∉∉A contribute                   

ΣΣΣΣv∉∉∉∉A: p(v)≥≥≥≥0 p(v)=C-ΣΣΣΣv∈∈∈∈A: p(v)≥≥≥≥0 p(v)
n Therefore the total capacity of the cut is          

c(S,T) = C - Σv∈∈∈∈A p(v) =C-Profit(A)


