

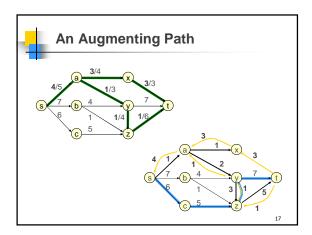
Residual Graph & Augmenting Paths

The residual graph (w.r.t. f) is the graph $G_f = (V, E_f)$, where $E_f = \{ (u, v) \mid C_f(u, v) > 0 \}$ Two kinds of edges

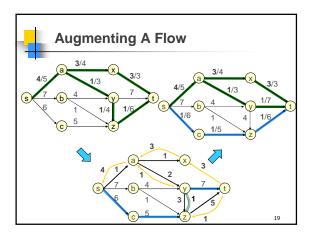
Forward edges

Forward edges f(u, v) < c(u, v) so $c_f(u, v) = c(u, v) - f(u, v) > 0$ Backward edges f(u, v) > 0 so $c_f(v, u) \ge - f(v, u) = f(u, v) > 0$ An augmenting path (w.r.t. f) is a simple $s \rightarrow t$ path in G_f .









Claim 7.1

If **G**_f has an augmenting path **P**, then the function **f**'=augment(**f**,**P**) is a legal flow.

Proof.

f' and f differ only on the edges of P so only need to consider such edges (u,v)

20

Proof of Claim 7.1

- If (u,v) is a forward edge then $f'(u,v)=f(u,v)+c_p\leq f(u,v)+c_f(u,v)\\ =f(u,v)+c(u,v)-f(u,v)\\ =c(u,v)$
- If (u,v) is a backward edge then f and f' differ on flow along (v,u) instead of (u,v) $f'(v,u)=f(v,u)-c_p \ge f(v,u)-c_f(u,v)$ = f(v,u)-f(v,u)=0
- Other conditions like flow conservation still met

-

Ford-Fulkerson Method

Start with f=0 for every edge While \mathbf{G}_f has an augmenting path, augment

- n Questions:
 - Does it halt?
 - n Does it find a maximum flow?
 - n How fast?

22

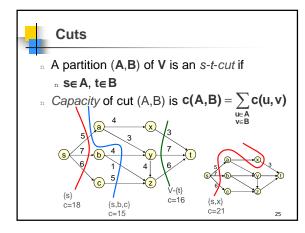
Observations about Ford-Fulkerson Algorithm

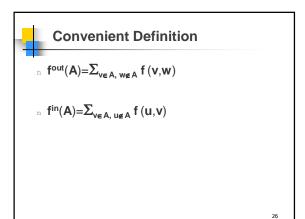
- At every stage the capacities and flow values are always integers (if they start that way)
- The flow value $v(f')=v(f)+c_p>v(f)$ for f'=augment(f,P)
 - Since edges of residual capacity 0 do not appear in the residual graph
- n Let $C=\sum_{(s,u)\in E} c(s,u)$
 - n **ν(f)≤C**
 - F-F does at most C rounds of augmentation since flows are integers and increase by at least 1 per step.

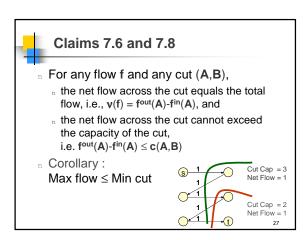
Running Time of Ford-Fulkerson

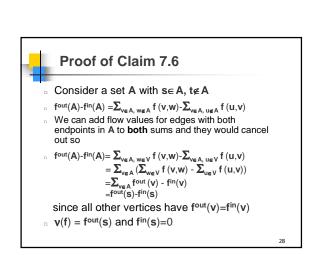
- n For f=0, G_f=G
- Finding an augmenting path in G_f is graph search O(n+m)=O(m) time
- $_{\scriptscriptstyle \rm I\! I}$ Augmenting and updating \boldsymbol{G}_f is O(n) time
- n Total O(mC) time
- Does is find a maximum flow?
 - Need to show that for every flow f that isn't maximum G_f contains an s-t-path

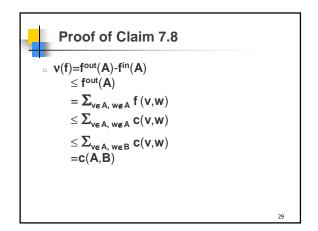
24

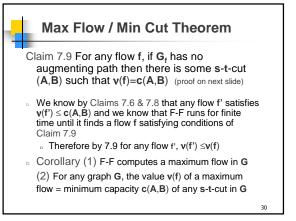


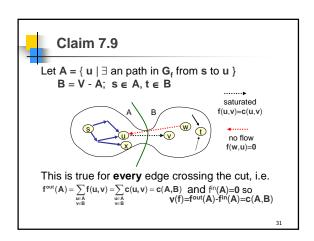


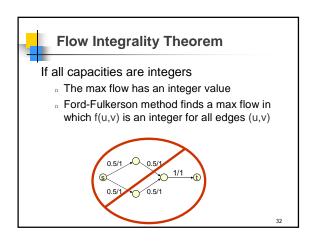


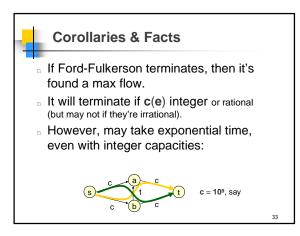


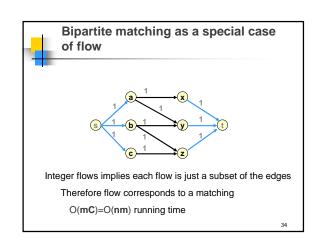












Capacity-scaling algorithm

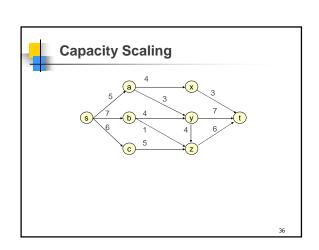
■ General idea:

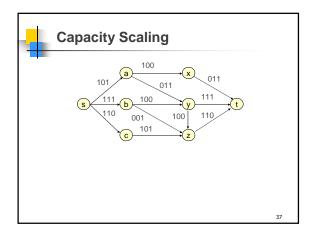
■ Choose augmenting paths P with 'large' capacity c_p

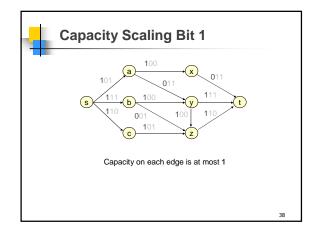
■ Can augment flows along a path P by any amount b≤c_p

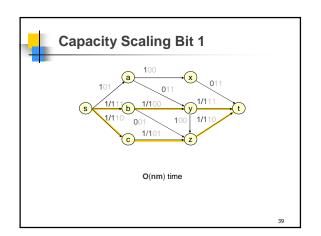
■ Ford-Fulkerson still works

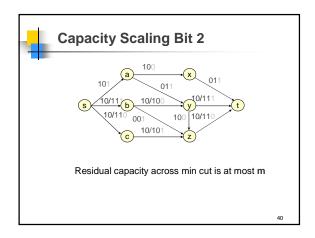
■ Get a flow that is maximum for the highorder bits first and then add more bits later

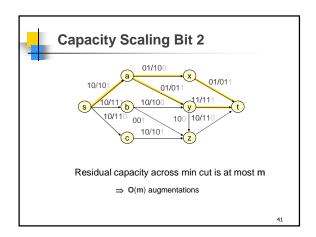


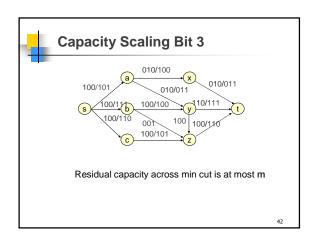


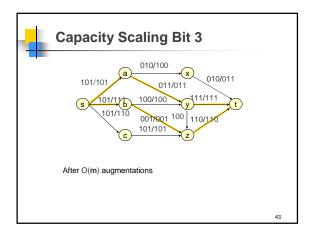


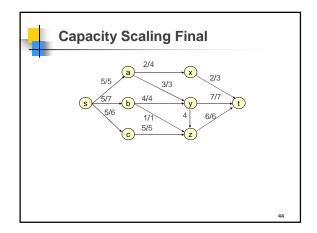


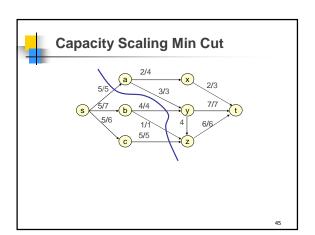


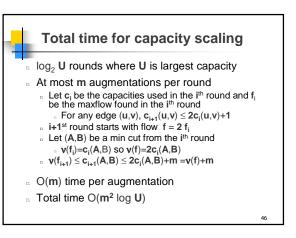


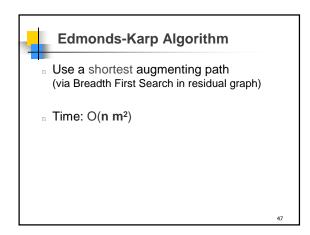


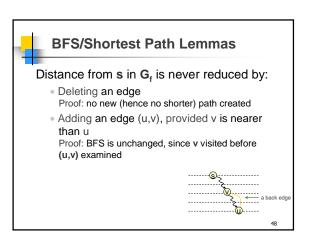










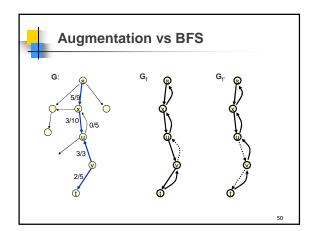


Key Lemma

Let f be a flow, \mathbf{G}_{f} the residual graph, and P a shortest augmenting path. Then no vertex is closer to \mathbf{s} after augmentation along \mathbf{P} .

Proof: Augmentation along **P** only deletes forward edges, or adds back edges that go to previous vertices along **P**

9



Theorem

The Edmonds-Karp Algorithm performs O(mn) flow augmentations

Proof:

Call (u,v) critical for augmenting path P if it's closest to s having min residual capacity

It will disappear from G_f after augmenting along P

In order for (u,v) to be critical again the (u,v) edge must re-appear in $G_{\mathfrak{f}}$ but that will only happen when the distance to u has increased by 1

It won't be critical again until farther from **s** so each edge critical at most **n** times

51

Corollary

Edmonds-Karp runs in O(nm²) time

52

Project Selection

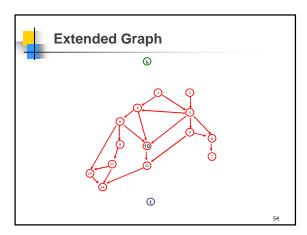
a.k.a. The Strip Mining Problem

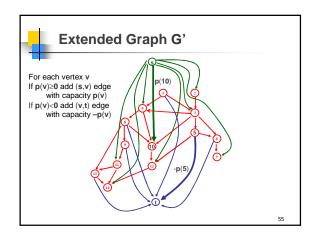
n Given

- a directed acyclic graph G=(V,E) representing precedence constraints on tasks (a task points to its predecessors)
- a profit value p(v) associated with each task v∈ V (may be positive or negative)

Find

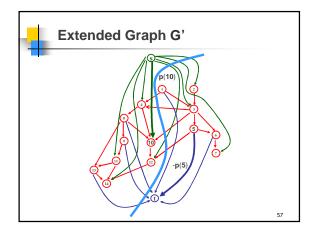
a set $A\subseteq V$ of tasks that is closed under predecessors, i.e. if $(u,v)\in E$ and $u\in A$ then $v\in A$, that maximizes $Profit(A)=\sum_{v\in A}p(v)$





Extended Graph G'

- Want to arrange capacities on edges of G so that for minimum s-t-cut (S,T) in G', the set A=S-{s}
 - n satisfies precedence constraints
 - n has maximum possible profit in G
- Cut capacity with S={s} is just C= $\sum_{v:\;p(v)\geq 0}p(v)$
 - Profit(A) ≤ C for any set A
- To satisfy precedence constraints don't want any original edges of ${\bf G}$ going forward across the minimum cut
 - That would correspond to a task in $A=S-\{s\}$ that had a predecessor not in $A=S-\{s\}$
- Set capacity of each of these edges to C+1
 - The minimum cut has size at most C



Project Selection

Claim Any s-t-cut (S,T) in G' such that A=S-{s} satisfies precedence constraints has

$$c(S,T)=C - \sum_{v \in A} p(v) = C - Profit(A)$$

- Corollary A minimum cut (S,T) in G' yields an optimal solution $A=S-\{s\}$ to the profit selection problem
- Algorithm Compute maximum flow f in G', find the set S of nodes reachable from s in G'f and return S-{s}

Proof of Claim

- n A=S-{s} satisfies precedence constraints
 - n No edge of G crosses forward out of A by our choice of capacities
 - $_{\scriptscriptstyle \rm n}$ Only forward edges cut are of the form (ν,t) for v∈Á or (s,v) for v∉A
 - n The (v,t) edges for v∈A contribute

 $\textstyle \sum_{v \in A: p(v) < 0} - p(v) = - \sum_{v \in A: p(v) < 0} p(v)$

n The (s,v) edges for v∉A contribute

 $\sum\nolimits_{v\notin A:\;p(v)\ge 0}p(v)=C^-\sum\nolimits_{v\in A:\;p(v)\ge 0}p(v)$ Therefore the total capacity of the cut is $c(\textbf{S},\textbf{T}) = \textbf{C} - \sum_{\textbf{v} \in \textbf{A}} p(\textbf{v}) = \textbf{C} \text{-Profit}(\textbf{A})$