CSE 421: Introduction to

‘ Algorithms

Divide and Conquer

Winter 2005
Paul Beame

. Algorithm Design Techniques

» Divide & Conquer

» Reduce problem to one or more sub-problems of
the same type

» Typically, each sub-problem is at most a
constant fraction of the size of the original
problem

» e.g. Mergesort, Binary Search, Strassen’s
Algorithm, Quicksort (kind of)

‘ ‘ Fast exponentiation

n Power(a,n)
n Input: integer n and number a
» Output: an

» Obvious algorithm
» n-1 multiplications

n Observation:
» if nis even, n=2m, then a"=am.am

. Divide & Conquer Algorithm

n Power(a,n)
if n=0 then return(1)
else if n=1 then return(a)
else
X —Power(an/2])
if n is even then
return(x-x)
else
return(a-x-x)

‘ ‘ Analysis

» Worst-case recurrence
n T(n)=T(n/2))+2 for n=1
o T(1)=0

n Time

n T(N)=T(n/2))+2 < T(Ln/4))+2+2 < ...
< T(1)+2+...42 = 2 log,n

log,n copies
» More precise analysis:

n T(n)= [log,n | +# of 1's in n’s binary
representation

. A Practical Application- RSA

n Instead of a” want a” mod N
» a*mod N = ((@ mod N)-(al mod N)) mod N
» same algorithm applies with each x-y replaced by
» ((x mod N):(y mod N)) mod N

» In RSA cryptosystem (widely used for security)

» need a” mod N where a, n, N each typically have
1024 bits

Power: at most 2048 multiplies of 1024 bit
numbers

« relatively easy for modern machines
Naive algorithm: 21924 multiplies

s

s

Binary search for roots

| | (bisection method)

iy

o

.

n Given:

n continuous function f and two points a<b with
f(a)<0andf(b) >0
n Find:
n approximation to c s.t. f(c)=0 and a<c<b

. ‘ Time Analysis

n At each step we halved the size of the
interval

» It started at size b-a
» It ended at size €

n # of calls to f is log,((b-a)/€)

| ‘ Closest Pair in the Plane
[]
[]

No single direction along which one
can sort points to guarantee success!

11

| Bisection method

Bisection(a,b, €)
if (a-b) <€ then
return(a)
else
c —(ath)/2
if f(c) <0 then
return(Bisection(c,b,g))
else
return(Bisection(a,c,g))

. Euclidean Closest Pair

n Given a set P of n points p,,...,p,, with real-
valued coordinates
Find the pair of points p;,p;0P such that the
Euclidean distance d(p;,p;) is minimized
O(n?) possible pairs
» In one dimension there is an easy O(n log n)
algorithm
» Sort the points
» Compare consecutive elements in the sorted list
» What about points in the plane?

B

Closest Pair In the Plane:

: Divide and Conquer

Sort the points by their x coordinates

n Split the points into two sets of n/2 points L
and R by x coordinate

Recursively compute

n closest pair of points in L, (p_,q,)

n closest pair of points in R, (pg,dg)

Let &min{d(p,.q,).d(Pr.0r)} and let (p,q) be
the pair of points that has distance &

» This may not be enough!

» Closest pair of points may involve one point from
L and the other from R!

r

B

B

‘ | A clever geometric idea

L R

Any pair of points pOL and
qOR with d(p,q)<d must
lie in band

No two points can be in
&2 { the same green box

Only need to check pairs
of points up to 2 rows
above and below -

At most 15 other points!

. Closest Pair Recombining

n Sort points by y coordinate ahead of time

» On recombination only compare each point in
LOR to the 12 points above it in the y sorted
order

If any of those distances is better than &
replace (p,q) by the best of those pairs

» O(n log n) for x and y sorting at start

n Two recursive calls on problems on half size
O(n) recombination

Total O(n log n)

B

B

B

Sometimes two sub-problems aren’t

ﬂ‘ enough

» More general divide and conquer

» You've broken the problem into a different
sub-problems

» Each has size at most n/b

» The cost of the break-up and recombining
the sub-problem solutions is O(n¥)

» Recurrence
n T(n)< a(n/b)+cm@k

15

Master Divide and Conquer

J Recurrence

o If T(n)< al(n/b)+c@* for n>b then
a if a>bk then T(n) is @(n\ogba)

a if a<bXthen T(n)is ©(nk)
n if a=bk then T(n) is ©(nk log n)

» Works even ifitis[n/b | instead of n/b.

| ‘ Proving Master recurrence

Problem size T(n)=aT(n/b)+cnk # probs
n ° 1

a L

2ty

7

Sy .
-

D ‘.,

n/b Lol a
- - ’Q .. - "
n/b2 e o oo o ‘e a2
i, .
b ° e o o
D ”“ .: .
1 e o o o o e gd

17

. Proving Master recurrence

Problem size T(n)=ad(n/b)+c@k # probs

n
| 8 e 1
nb <, .o.‘ ° ".o‘ a
g b S = o
n/b2 11 e o o8 o @ 22
b ° * e o o
1 e o o e o o
T(1)=c

‘ | Proving Master recurrence

Problem size rny=ar(n/b)+c@k #probs cost
L]

. Geometric Series

n S o=t+tr +tr2+ L+t
g = tr +tr2+ ..+t + "
n (r-1)S =tr" - t

n S0 S=t (r"-1)/(r-1) if r#1.

n Simple rule

» Ifr # 1 then S is a constant times largest
term in series

n k
cn
I ? NS !
nb < ¢ o o a CcARMK/bk
n/b2 g e o e o @ 32 c@2mk/b2x
ERS =cMk(a/bk)3
b ° - e o o
N . RN cX(a/bk)d
1 o o ° o o e ad g
T(1)=c =c@
19
| ‘ Total Cost
n Geometric series
a ratio a/b
n d+1=logy,n +1 terms
o firstterm cnk, lastterm cad
0 If a/bk:l
» all terms are equal T(n) is ©(nk log n)
0 If a/bk<l
n first term is largest T(n) is ©(nk)
0 If a/bk>1 loa.n log,a
» lastterm is largest T(n) is ©(a?)=0(~ ") =o(n %)

(To see this take log, of both sides)

21

. Multiplying Matrices

ay a, & a,| by b, by by
az1aﬂazxaz4.bz1bzb23bz4
8 8p Ay Ay| by by by by
8y Ap A Ay [by by by by
ab,+ah, tab, tab, ab,tahb,tab,tab, o ab,tab,tab,tab,
| by ta b, tab tab, ab,+ab,rad,+ab, o abtab,tab,tab,
aby taghy tahy tahy, ab, tagh, tad, tah, o abtagh, tady, taby,
abutab,tabyrab, ab,+ak,rad,+ak, o ab,+tab,rab,rab,

n n® multiplications, n3-n? additions

| ‘ Multiplying Matrices

fori=1ton
forj=1ton
C[i,j]-0
fork=1ton
Cli,jI=Cli,j]+Ali KIB[k,j]
endfor
endfor
endfor

23

. Multiplying Matrices

a, a,|a; Ay blg b,
az1 aﬂ a23 a24 " @1 bﬁ b23 @4
8y @p 8y Ay | by by by by
»a41 Qp Q3 Ay >b41 b42 bAa b44

ah, +ab,rab, +ab, ah,+ab, o ap,rab,+ap,+ah,|

| b, tahtady tah, |ab, tab,trab, takh, o ahtad, tah,tah,
ayb, tagh, tady +ab, ah,+ab,tabytab, o abrak,rad,+alb,

[Buloy + 2k +ady tauy A, tagh, tadl, taub, o aub,tag, tady, tauby |

3y
o
Ay
Ay

allql + al;&l
= azlth +aﬂbzl

o
ay |8 |,

8 8y Ay

A B Ay

a,. b,
a b, +a,b,

A0 + 8,0, | B, 3k, A,

| | Multiplying Matrices

[by b, by by

by by | by by

D tab, | ab,+akb, °© aiiQA+aizb2A+aﬂbM+alAbM_
taby| o &b, tak, tadb, tab,

ajlql‘"%l‘"%l‘"%bﬂ %1“2"’%"’%"’%‘;’42 ° aSibLA+aSZbZA+a{g4+aSAbM

_ Multiplying Matrices

[a;, a, a, by, by,

aPia, | alia, . E?lbzz E?%

asA A | A 8y b, by,

lai 28, | af\2a,, | |bi 2B, | b3 28,
auth"'ahth b tiZ +q2t52 +%2 +al4 ’PM"’au 44
autmaﬂbzﬁaﬁ a%awagpwaﬂ | 2% éjz%wgb%a%%)
[|ah ah.+ ::Z\ 41 33& +aggz+ayb| aﬂnnanwwmyb
Ay +ab, +ab, PABY L B2RaBL +ah, +ab.l o diprRm A

auth +a42bZl + a43t§1 + aMb4l auti? +a42bK + a43t§z + aMb4Z

o gy, +agdy, +adh, +a.b, |

25

| ‘ Simple Divide and Conquer

A | A]I Bu | Bi,
An | A, Jl Bas | B,

A11B1+A,Bo | A11B1+AB o,

A21511+A22821| Az1Bi1a+A;B 2
n T(n)=8T(n/2)+4(n/2)?=8T(n/2)+n?

n 8>22s0 T(n) is
O(n°%*) = O(n'°**°) = On°)

Strassen’s Divide and Conquer

i Algorithm

n Strassen’s algorithm

» Multiply 2x2 matrices using 7 instead of 8
multiplications (and lots more than 4 additions)

n T(n)=7 T(n/2)+cn?
. 7522 50 T(n)is ©(n'"°%") which is O(n2#-)

» Fastest algorithms theoretically use O(n276) time
» not practical but Strassen’s is practical
provided calculations are exact and we stop
recursion when matrix has size about 100
(maybe 10)

‘ The algorithm

P, —Ap(B11+By); Py Ay (B1o+By)
P (An-Ap)Br; Py (Ap- An)Byp
Ps < (A22 - AlZ)(le - Bzz)

Ps - (All - A21)(812 - Bll)

F>7 - (A21 - Alz)(Bll+Bzz)

Cyy PP Cip PytPs+Pg- Py
Cp « P+P,+Ps+P;; Cypp - PytP,

29

Another Divide &Conquer Example:

i Multiplying Faster

n If you analyze our usual grade school
algorithm for multiplying numbers
n ©O(n?) time
» On real machines each “digit” is, e.g., 32 bits long
but still get ©(n?) running time with this algorithm
when run on n-bit multiplication
n We can do better!
» We'll describe the basic ideas by multiplying
polynomials rather than integers

» Advantage is we don't get confused by worrying
about carries at first

| | Notes on Polynomials

» These are just formal sequences of
coefficients

» when we show something multiplied by x¥ it just
means shifted k places to the left — basically no

work
) AX2 +2x + 2
Usual polynomial Xx2- 3x +1
multiplication 4X2 +2X + 2
-12x3 - 6x2 - 6x
4x4 + 2x3 +2x2
4x4 -10x3 +0x2 - 4x + 2

31

. Polynomial Multiplication

n Given:
» Degree n-1 polynomials P and Q
P=a,+a, x+a, X2+ ... +a,,Xx"2+a, ,x"1
Q=by+b, x+b,x2+ ... +b ,x"2+b xnt
n Compute:
» Degree 2n-2 Polynomial P Q
n PQ=agh, + (agh,+a;by) x + (agh,+a;b, +a,b,) x?
+oF (A pbygtan b, o) X213 + a8, b, X202
» Obvious Algorithm:

» Compute all ab; and collect terms
n ©(n?) time

‘ ‘ Naive Divide and Conquer

n Assume n=2k
n P=(ag+a; x+a,x2+ .. +a,xk2+a g xk) +
(At ag x+ A XK 4 g Xk XK
=P, + P, xk where P, and P, are degree k-1
polynomials
n Similarly Q = Q, + Q, x¥
n PQ = (Pg+Px*)(Qu+Q;x)
=PyQq + (P1Q+PQ)Xk + P,Q,x%¢
n 4 sub-problems of size k=n/2 plus linear combining
» T(n)=40(n/2)+cn Solution T(n) = @(n?)

33

. Karatsuba’'s Algorithm

n A better way to compute the terms
» Compute
A~ PDQO
B ~ P1Q1
C « (Py+P)(Q+Q,) = PoQy+P1Q+P,Q,+P,Q;
n Then
» PoQ,+P,Q, = C-A-B
» S0 PQ=A+(C-A-B)xk+Bx
n 3 sub-problems of size n/2 plus O(n) work
T(n) =3 T(n/2) +cn
T(n) = O(n®) where a = log,3 = 1.59...

Karatsuba: ———
| Details B;Mjn_l
I E—
[R |
PolyMul(P, Q): 2n-1 n ni2 0

/I P, Q are length n =2k vectors, with P[i], Q[i] being
/I the coefficient of xi in polynomials P, Q respectively.
/I Let Pzero be elements 0..k-1 of P; Pone be elements k..n-1
/I Qzero, Qone : similar
If n=1 then Return(P[0]*Q[0]) else
A — PolyMul(Pzero, Qzero); // resultis a (2k-1)-vector
B — PolyMul(Pone, Qone); /I ditto
Psum ~ Pzero + Pone; /I add corresponding elements
Qsum ~ Qzero + Qone; /I ditto
C ~ polyMul(Psum, Qsum); /I another (2k-1)-vector
Mid -« C-A-B; /I subtract correspond elements
R < A + Shift(Mid, n/2) +Shift(B,n) // a (2n-1)-vector
Return(R);

35

. Multiplication

n Polynomials
» Naive: ©(n?)
» Karatsuba: ©(n'59-)
» Best known: ©(n log n)
» "Fast Fourier Transform*
» FFT widely used for signal processing
n Integers
» Similar, but some ugly details re: carries, etc.
gives ©(n log n loglog n),
» mostly unused in practice except for symbolic
manipulation systems like Maple

Hints towards FFT:

J | Interpolation

Given set of values at 5 points

37

Hints towards FFT:

) Interpolation

Given set of values at 5 points
Can find unique degree 4 polynomial
going through these points

| ‘ Interpolation

Given values of degree n-1 polynomial R at n
distinct points y,,...,y,

n R(y.---.R(y,)

Compute coefficients c,,...,c,,, such that

n R(X)=Cytc x+C, X2+...+C X"t

System of linear equations in c,...,C, .,
Co +C1Y1+CoY %+ ...+C 1Y " =R(Yy)

Co +C1YoHCoY %+ +C 1 Yo" =R(Y,)

r

known

unknown
CO +C1yn+C2yn2+' . '+Cn-1ynn—1=R(yn)

39

Interpolation:
i n equations in n unknowns

» Matrix form of the linear system
1y yi2 o ya™ e R(y1)
1y, v2 o ¥ |y R(Y,)

c, |=

1 Yo Vo2 oo Ya"™Y | Cha| [R(Yn)

n Fact: Determinant of the matrix is |_|i<j iry)
which is not 0 since points are distinct
» System has a unique solution c,...,.c,;

40

Hints towards FFT:

| ‘ Evaluation & Interpolation

ordinary polynomial

P:ag,ay,...an., multiplication ©(n?) -
Q: bg,by,....by 4 o~ Sab R:Cy,C1ye-,Conq
0

evaluation i interpolation
at Yo, Yona from yg,....Yan1
(?) 0(?)
point-wise
P(YO)'Q(YU) multiplication R(yo) - P(yo)KD.(yo)

P(y1),Q(y1) of numbers O(n) R(yl) - P(yl)@(yl)
P(an—1).:é(y2n—1)

ROVa01) — P20 @ (Yo02)

41

Karatsuba’s algorithm and evaluation

i and interpolation

n Strassen gave a way of doing 2x2 matrix multiplies
with fewer multiplications
» Karatsuba's algorithm can be thought of as a way of
multiplying degree 1 polynomials (which have 2
coefficients) using fewer multiplications
n PQ=(P+P,2)(Qe+Q,2)
=PoQq + (P1Qu+PeQ1)z + P,Q;22
» Evaluate at 0,1,-1 (Could also use other points)
+ A =P(0)Q(0)= PyQ,
+ C=P(1)Q(1)=(Py+P)(Qe+Q,)
+ D =P(-1)Q(-1)=(P, -P,)(Q-Q.)
» Interpolating, Karatsuba’s Mid=(C-D)/2 and B=(C+D)/2-A

42

Hints towards FFT:

| | Evaluation at Special Points

n Evaluation of polynomial at 1 point takes O(n)

» So 2n points (naively) takes O(n?)—no savings

n Key trick:

n use carefully chosen points where there’s some
sharing of work for several points, namely various
powers of gy=2M j = /7]

n Plus more Divide & Conquer.

» Result:
n both evaluation and interpolation in O(n log n)
time

43

| Fun facts about w=e2m /" for even n

n= 1

n wlz = -1

0 @2tk = - X for all values of k
n @ = e2m/M where m=n/2

n @ = cos(2kmn)+i sin(2kmn) SO can compute
with powers of W

44

| ‘ The key idea for n even

L P(w) = ag+a, ra,ur+a uita,wt. +a, o't
= a, +a,uy +a,w’ +...+ a, 02
+ a,wta o +age’ +...+a, W't
= Peyen(W) + 0Pq4(0¥)
- P(-w)=a, -a,wta,or -a;et+a,wt-... -a, ,w't
= ay +a,uy ta,uft +..+ a, W'
- (aywtasw? +asw’ +...+a, ,w')
= Peven(wz) - wPodd(wz)
where P, (x) = a,+a,x +a,x? +..+ a, ,x"21

and Pgg(x) =a,tagx tagx? +...+a, X"
45

The recursive idea for
| n a power of 2

n Also
n Poen and Py, have degree n/2 where
n P(W)ZPeyen(07)+6XPogq (07

n P-0)=Peen(07)-wPogq (007
» Recursive Algorithm @i e;wm wherefm:nlz
g SO problems are of same
» Evaluate Peven at 107,002 type but smaller size

« Evaluate P 4 at 1,07?,0,...,00"2
» Combine to compute P at 1,w,0?,...,w"21

» Combine to compute P at -1,-w,-G¥?,...,-0)"/2t
(i.e. atwlz, wV2+L , w/2+2,..., w\-l)

46

| ‘ Analysis and more

n Run-time
n T(nN)=200/(n/2)+cn so T(n)=0O(n log n)
» So much for evaluation ... what about
interpolation?
» Given
r,=R(1), r,;=R(w), ,=R(¥),..., r,.;.=R(a"?)
» Compute
1 Cgy C1ye.,Cpy St R(X)=CoH+C X +...4C, XL

47

Interpolation = Evaluation:

| strange but true

n Weird fact:

» If we define a new polynomial
S(X) =g+ rX +rx2+...+r, X" whererg, ry, ..., 4
are the evaluations of R at1, , ... , W't
» Then c,=S(w*)/n for k=0,...,n-1

n So...

» evaluate S at 1,w?!,w?,...,w™ Y then divide each
answer by n to get the c,,...,c,;

n ' behaves just like wdid so the same O(n log n)
evaluation algorithm applies !

48

. | Divide and Conquer Summary

Powerful technique, when applicable

Divide large problem into a few smaller
problems of the same type

Choosing sub-problems of roughly equal size
is usually critical

Examples:

» Merge sort, quicksort (sort of), polynomial
multiplication, FFT, Strassen's matrix multiplication
algorithm, powering, binary search, root finding by
bisection, ...

r

r

49

Why this is called the discrete Fourier

transform

» Real Fourier series

» Given a real valued function f defined on [0,21]
the Fourier series for f is given by
f(x)=a,+a, cos(x) + a, cos(2x) +...+ a,, cos(mx) +...
where

1 2n
a,=om 'o[f(x) cos(mx) dx

n is the component of f of frequency m

» In signal processing and data compression one
ignores all but the components with large a,, and
there aren’t many since

Why this is called the discrete Fourier

) ‘ transform

» Complex Fourier series
» Given a function f defined on [0,217]
the complex Fourier series for f is given by
f(z)=bytb, €'z +b,edz +.+b emz+..
where

er[
= — |f(ze™*dz
b 2n£()

is the component of f of frequency m

» If we discretize this integral using values at n

equally spaced points between 0 and 2rtwe get

— n-1 n-1
b = 1ka ekmimn = Eka w™*™ where f,=f(2kT7n)
ni= N =

just like interpolation! 51

