

- Typically, each sub-problem is at most a constant fraction of the size of the original problem
 - e.g. Mergesort, Binary Search, Strassen's Algorithm, Quicksort (kind of)

2

Fast exponentiation

- n Power(a,n)
 - n Input: integer n and number a
 - n Output: an
- n Obvious algorithm
 - n n-1 multiplications
- n Observation:
 - n if n is even, n=2m, then an=am•am

•

Divide & Conquer Algorithm

n Power(a,n)
 if n=0 then return(1)
 else if n=1 then return(a)
 else

 $\mathbf{x} \leftarrow \text{Power}(\mathbf{a}, \lfloor \mathbf{n}/2 \rfloor)$ if \mathbf{n} is even then return $(\mathbf{x} \cdot \mathbf{x})$ else return $(\mathbf{a} \cdot \mathbf{x} \cdot \mathbf{x})$

4

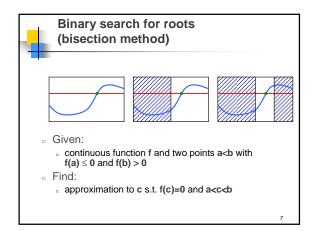
Analysis

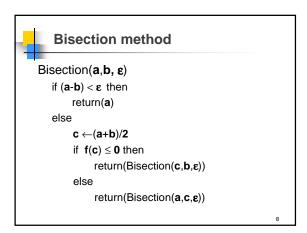
- Morst-case recurrence
 - n T(n)=T(⌊n/2⌋)+2 for n≥1
 - n T(1)=0
- n Time
 - $\begin{array}{ll} _{\text{n}} & T(n) = T(\lfloor n/2 \rfloor) + 2 \leq T(\lfloor n/4 \rfloor) + 2 + 2 \leq \ldots \\ & \leq T(1) + \underbrace{2 + \ldots + 2}_{\text{log}_{2} n \text{ copies}} = 2 \log_{2} n \end{array}$
- n More precise analysis:
 - _n $T(n) = \lceil \log_2 n \rceil$ + # of 1's in n's binary representation

•

A Practical Application- RSA

- n Instead of an want an mod N
 - $_{n}$ $a^{i+j} \mod N = ((a^{i} \mod N) \cdot (a^{j} \mod N)) \mod N$
 - n same algorithm applies with each x•y replaced by
 - $_{\text{m}}$ (($\mathbf{x} \mod \mathbf{N}$)•($\mathbf{y} \mod \mathbf{N}$)) $\mod \mathbf{N}$
- n In RSA cryptosystem (widely used for security)
 - $_{\rm n}$ need a^{n} mod N where a, n, N each typically have 1024 bits
 - Power: at most 2048 multiplies of 1024 bit numbers
 - n relatively easy for modern machines
 - n Naive algorithm: 21024 multiplies





-

Time Analysis

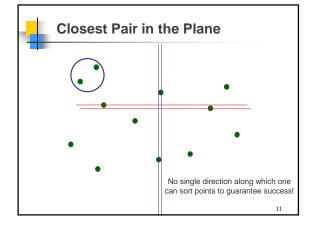
- At each step we halved the size of the interval
- n It started at size b-a
- n It ended at size ε
- n # of calls to f is log₂((b-a)/ε)

-

Euclidean Closest Pair

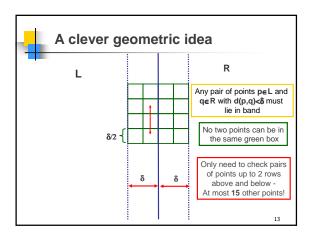
- Given a set P of n points p₁,...,p_n with realvalued coordinates
- Find the pair of points $\mathbf{p_i}$, $\mathbf{p_j} \in \mathbf{P}$ such that the Euclidean distance $\mathbf{d}(\mathbf{p_i}, \mathbf{p_j})$ is minimized
- $\Theta(n^2)$ possible pairs
- $_{\rm n}$ In one dimension there is an easy $O(n \log n)$ algorithm
 - n Sort the points
 - n Compare consecutive elements in the sorted list
- Mhat about points in the plane?

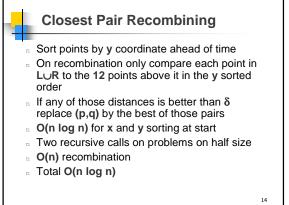
10



Closest Pair In the Plane: Divide and Conquer

- Sort the points by their x coordinates
- Split the points into two sets of n/2 points L and R by x coordinate
- n Recursively compute
 - $_{\rm n}$ closest pair of points in L, $(\mathbf{p}_{\rm L}, \mathbf{q}_{\rm L})$
 - $_{\rm n}$ closest pair of points in R, $(\mathbf{p}_{\rm R},\mathbf{q}_{\rm R})$
- Let $\delta = \min\{d(p_L,q_L),d(p_R,q_R)\}\$ and let (p,q) be the pair of points that has distance δ
- This may not be enough!
 - Closest pair of points may involve one point from L and the other from R!





More general divide and conquer

You've broken the problem into a different sub-problems

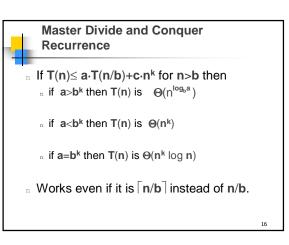
Each has size at most n/b

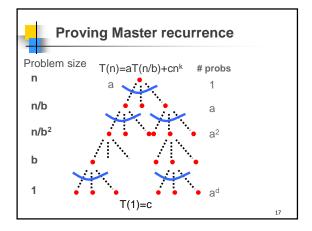
The cost of the break-up and recombining

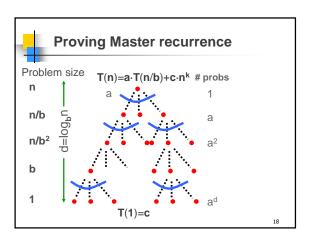
The cost of the break-up and recombining the sub-problem solutions is $O(n^k)$

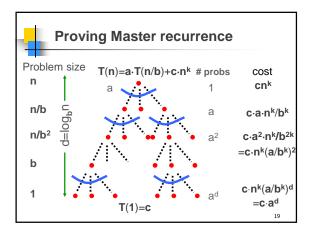
n Recurrence

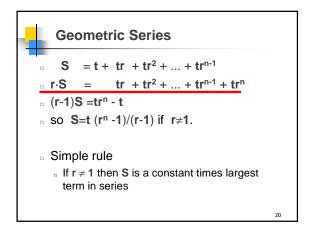
 $_{\text{\tiny n}} \ T(n) {\leq} \ a {\cdot} T(n/b) {+} c {\cdot} n^k$

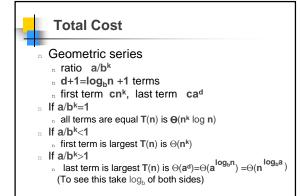


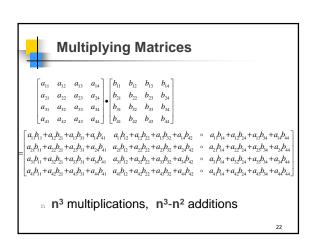


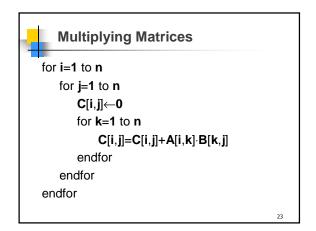


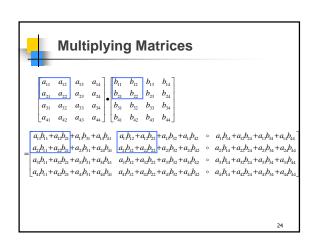


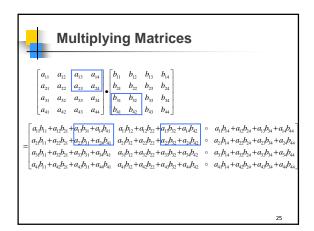


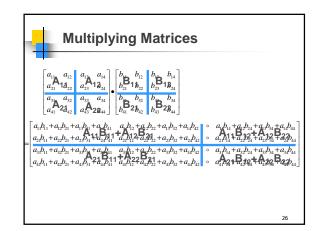


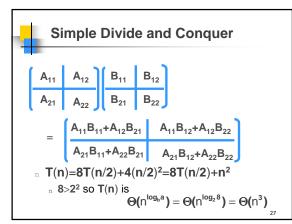


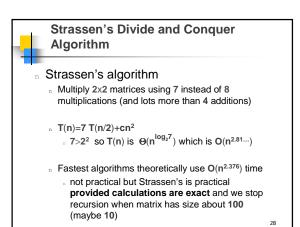


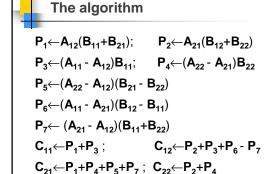












Another Divide &Conquer Example: Multiplying Faster

- If you analyze our usual grade school algorithm for multiplying numbers
- $_{\text{п}}$ $\Theta(n^2)$ time
- $_{\rm n}$ On real machines each "digit" is, e.g., 32 bits long but still get $\Theta(n^2)$ running time with this algorithm when run on n-bit multiplication
- We can do better!
- We'll describe the basic ideas by multiplying polynomials rather than integers
- Advantage is we don't get confused by worrying about carries at first

Notes on Polynomials

- These are just formal sequences of coefficients
 - $_{\rm n}$ when we show something multiplied by ${\bf x}^{\bf k}$ it just means shifted ${\bf k}$ places to the left basically no work

Usual polynomial multiplication

$$\begin{array}{r} 4x^2 + 2x + 2 \\ x^2 - 3x + 1 \\ 4x^2 + 2x + 2 \\ -12x^3 - 6x^2 - 6x \\ 4x^4 + 2x^3 + 2x^2 \\ 4x^4 - 10x^3 + 0x^2 - 4x + 2 \end{array}$$

Polynomial Multiplication

- n Given:
 - n Degree n-1 polynomials P and Q
 - $\mathbf{P} = \mathbf{a}_0 + \mathbf{a}_1 \mathbf{x} + \mathbf{a}_2 \mathbf{x}^2 + \dots + \mathbf{a}_{n-2} \mathbf{x}^{n-2} + \mathbf{a}_{n-1} \mathbf{x}^{n-1}$
 - $Q = b_0 + b_1 x + b_2 x^2 + ... + b_{n-2} x^{n-2} + b_{n-1} x^{n-1}$
- n Compute:
 - n Degree 2n-2 Polynomial PQ
 - $\begin{array}{l} {}_{\text{n}} \;\; \mathsf{P} \; \mathsf{Q} = \mathsf{a}_0 \mathsf{b}_0 + (\mathsf{a}_0 \mathsf{b}_1 + \mathsf{a}_1 \mathsf{b}_0) \; \mathbf{x} + (\mathsf{a}_0 \mathsf{b}_2 + \mathsf{a}_1 \mathsf{b}_1 + \mathsf{a}_2 \mathsf{b}_0) \; \mathbf{x}^2 \\ \qquad \qquad + \ldots + (\mathsf{a}_{\mathsf{n} 2} \mathsf{b}_{\mathsf{n} 1} + \mathsf{a}_{\mathsf{n} 1} \mathsf{b}_{\mathsf{n} 2}) \; \mathbf{x}^{2\mathsf{n} 3} + \mathsf{a}_{\mathsf{n} 1} \mathsf{b}_{\mathsf{n} 1} \; \mathbf{x}^{2\mathsf{n} 2} \end{array}$
- Dobvious Algorithm:
 - n Compute all aibi and collect terms
 - _n Θ (n²) time

32

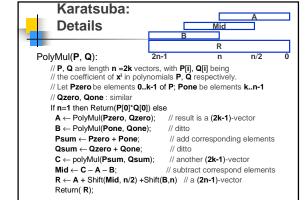
Naive Divide and Conquer

- Assume n=2k
 - $\begin{array}{lll} & P = (a_0 + a_1 & x + a_2 & x^2 + \ldots + a_{k-2} & x^{k-2} + a_{k-1} & x^{k-1}) + \\ & (a_k + a_{k+1} & x + & \ldots + a_{n-2} x^{k-2} + a_{n-1} x^{k-1}) & x^k \\ & = P_0 + P_1 & x^k & \text{where } P_0 & \text{and } P_1 & \text{are degree k-1} \\ & & \text{polynomials} \end{array}$
 - ⁿ Similarly $Q = Q_0 + Q_1 x^k$
- $\begin{array}{ll} \text{ .. } & P \ Q \ = (P_0 + P_1 x^k)(Q_0 + Q_1 x^k) \\ & = P_0 Q_0 + (P_1 Q_0 + P_0 Q_1) x^k + P_1 Q_1 x^{2k} \end{array}$
- 4 sub-problems of size k=n/2 plus linear combining
- T(n)=4-T(n/2)+cn Solution $T(n) = \Theta(n^2)$

Karatsuba's Algorithm

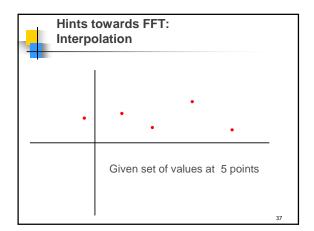
- n A better way to compute the terms
 - n Compute
 - $A \leftarrow P_0Q_0$
 - $_{1}$ B ← P_1Q_1
 - $\mathbf{C} \leftarrow (\mathbf{P_0} + \mathbf{P_1})(\mathbf{Q_0} + \mathbf{Q_1}) = \mathbf{P_0}\mathbf{Q_0} + \mathbf{P_1}\mathbf{Q_0} + \mathbf{P_0}\mathbf{Q_1} + \mathbf{P_1}\mathbf{Q_1}$
 - n Then
 - $P_0Q_1+P_1Q_0=C-A-B$
 - So PQ=A+(C-A-B)xk+Bx2k
 - $_{\scriptscriptstyle \rm n}$ 3 sub-problems of size n/2 plus O(n) work
 - T(n) = 3 T(n/2) + cn
 - T(n) = $O(n^{\alpha})$ where $\alpha = \log_2 3 = 1.59...$

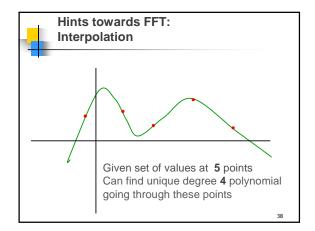
34



Multiplication

- n Polynomials
 - n Naïve: **Θ**(n²)
 - _n Karatsuba: Θ(n^{1.59...})
 - n Best known: **Θ**(n log n)
 - "Fast Fourier Transform"
 - FFT widely used for signal processing
- n Integers
 - Similar, but some ugly details re: carries, etc. gives **Θ**(n log n loglog n),
 - mostly unused in practice except for symbolic manipulation systems like Maple





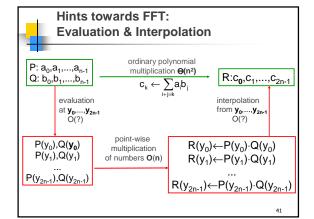
Interpolation

n Given values of degree n-1 polynomial R at n distinct points y_1, \ldots, y_n n $R(y_1), \ldots, R(y_n)$ n Compute coefficients c_0, \ldots, c_{n-1} such that $R(x) = c_0 + c_1 x + c_2 x^2 + \ldots + c_{n-1} x^{n-1}$ n System of linear equations in c_0, \ldots, c_{n-1} $c_0 + c_1 y_1 + c_2 y_1^2 + \ldots + c_{n-1} y_1^{n-1} = R(y_1)$ $c_0 + c_1 y_2 + c_2 y_2^2 + \ldots + c_{n-1} y_2^{n-1} = R(y_2)$ \ldots $c_0 + c_1 y_n + c_2 y_n^2 + \ldots + c_{n-1} y_n^{n-1} = R(y_n)$ unknown

Interpolation: n equations in n unknowns

Matrix form of the linear system $\begin{pmatrix}
1 & y_1 & y_1^2 & \dots & y_1^{n-1} \\
1 & y_2 & y_2^2 & \dots & y_2^{n-1} \\
\dots & \dots & \dots & \dots \\
1 & y_n & y_n^2 & \dots & y_n^{n-1}
\end{pmatrix}
\begin{pmatrix}
c_0 \\
c_1 \\
c_2 \\
\vdots \\
c_{n-1}
\end{pmatrix}
\begin{pmatrix}
R(y_1) \\
R(y_2) \\
\vdots \\
R(y_n)
\end{pmatrix}$ Fact: Determinant of the matrix is $\Pi_{i < j}$ ($y_i - y_j$) which is not 0 since points are distinct

System has a unique solution c_0, \dots, c_{n-1}



Karatsuba's algorithm and evaluation and interpolation

Strassen gave a way of doing 2x2 matrix multiplies with fewer multiplications

Karatsuba's algorithm can be thought of as a way of multiplying degree 1 polynomials (which have 2 coefficients) using fewer multiplications $PQ=(P_0+P_1z)(Q_0+Q_1z)$ $PQ=(P_0+P_1z)(Q_0+Q_1z)$ $PQ=(P_0+P_1z)(Q_0+Q_1)z+P_1Q_1z^2$ Evaluate at 0,1,-1 (Could also use other points) $A = P(0)Q(0) = P_0Q_0$ $C = P(1)Q(1)=(P_0+P_1)(Q_0+Q_1)$ $D = P(-1)Q(-1)=(P_0-P_1)(Q_0-Q_1)$ Interpolating, Karatsuba's Mid=(C-D)/2 and B=(C+D)/2-A

Hints towards FFT: Evaluation at Special Points

- Evaluation of polynomial at 1 point takes O(n)
 - n So 2n points (naively) takes O(n²)—no savings
- n Key trick:
 - n use carefully chosen points where there's some sharing of work for several points, namely various powers of $\omega = e^{2\pi i/n}$, $i = \sqrt{-1}$
- Plus more Divide & Conquer.
- n Result:
 - both evaluation and interpolation in O(n log n)

Fun facts about $\omega = e^{2\pi i/n}$ for even n

- $m \omega^n = 1$
- $\omega^{n/2} = -1$
- $\omega^{n/2+k} = -\omega^k$ for all values of k
- $\omega^2 = e^{2\pi i/m}$ where m=n/2
- $\omega^{k} = \cos(2k\pi/n) + i \sin(2k\pi/n)$ so can compute with powers of ω

The key idea for n even

- $P(\omega) = a_0 + a_1 \omega + a_2 \omega^2 + a_3 \omega^3 + a_4 \omega^4 + ... + a_{n-1} \omega^{n-1}$ = $a_0 + a_2 \omega^2 + a_4 \omega^4 + ... + a_{n-2} \omega^{n-2}$ + $a_1\omega + a_3\omega^3 + a_5\omega^5 + ... + a_{n-1}\omega^{n-1}$ = $P_{even}(\omega^2) + \omega P_{odd}(\omega^2)$
- $P(-\omega)=a_0-a_1\omega+a_2\omega^2-a_3\omega^3+a_4\omega^4-...-a_{n-1}\omega^{n-1}$ $= a_0 + a_2 \omega^2 + a_4 \omega^4 + ... + a_{n-2} \omega^{n-2}$ - $(a_1\omega + a_3\omega^3 + a_5\omega^5 + ... + a_{n-1}\omega^{n-1})$ = $P_{\text{even}}(\omega^2)$ - $\omega P_{\text{odd}}(\omega^2)$ where $P_{even}(x) = a_0 + a_2 x + a_4 x^2 + ... + a_{n-2} x^{n/2-1}$

and $P_{odd}(x) = a_1 + a_3 x + a_5 x^2 + ... + a_{n-1} x^{n/2-1}$

The recursive idea for

n a power of 2

- Also
 - P_{even} and P_{odd} have degree n/2 where
 - $P(\omega^k) = P_{even}(\omega^{2k}) + \omega^k P_{odd}(\omega^{2k})$
 - $P(-\omega^k)=P_{even}(\omega^{2k})-\omega^kP_{odd}(\omega^{2k})$

Recursive Algorithm

- ω² is e^{2πi/m} where m=n/2 so problems are of same type but smaller size
- _n Evaluate P_{even} at $1, \omega^2, \omega^4, ..., \omega^{n-2}$ n Evaluate P_{odd} at 1,ω²,ω⁴,...,ωⁿ⁻² ←
- Combine to compute **P** at $1, \omega, \omega^2, ..., \omega^{n/2-1}$
- Combine to compute P at -1,- ω ,- ω^2 ,...,- $\omega^{n/2-1}$ (i.e. at $\omega^{n/2}$, $\omega^{n/2+1}$, $\omega^{n/2+2}$,..., ω^{n-1})

Analysis and more

- n Run-time
 - $_{n}$ T(n)=2·T(n/2)+cn so T(n)=O(n log n)
- n So much for evaluation ... what about interpolation?
 - n Given
 - $r_0 = R(1), r_1 = R(\omega), r_2 = R(\omega^2), ..., r_{n-1} = R(\omega^{n-1})$
 - _n Compute
 - $c_0, c_1,...,c_{n-1}$ s.t. $R(x)=c_0+c_1x+...+c_{n-1}x^{n-1}$

Interpolation ≈ Evaluation: strange but true

- n Weird fact:
 - If we define a new polynomial
 $$\begin{split} S(x) &= r_0 + r_1 x + r_2 x^2 + ... + r_{n-1} x^{n-1} \text{ where } r_0, \, r_1, \, ... \, , \, r_{n-1} \\ &\text{are the evaluations of R} \ \text{at } 1, \, \omega, \, ... \, , \, \omega^{n-1} \end{split}$$
 - Then $c_k=S(\omega^{-k})/n$ for k=0,...,n-1
- n So...
 - evaluate S at 1, ω^{-1} , ω^{-2} ,..., $\omega^{-(n-1)}$ then divide each answer by n to get the $c_0,...,c_{n-1}$
 - ω^{-1} behaves just like ω did so the same $O(n \log n)$ evaluation algorithm applies!

Divide and Conquer Summary

- n Powerful technique, when applicable
- Divide large problem into a few smaller problems of the same type
- $_{\rm n}$ Choosing sub-problems of roughly equal size is usually critical
- n Examples:
 - Merge sort, quicksort (sort of), polynomial multiplication, FFT, Strassen's matrix multiplication algorithm, powering, binary search, root finding by bisection, ...

49

Why this is called the discrete Fourier transform

Real Fourier series

 $_{\rm n}$ Given a real valued function f defined on $[0,2\pi]$ the Fourier series for f is given by $f(x){=}a_0{+}a_1\cos(x) + a_2\cos(2x) + ... + a_m\cos(mx) +...$ where

$$a_{m} = \frac{1}{2\pi} \int_{0}^{2\pi} f(x) \cos(mx) dx$$

- n is the component of f of frequency m
- $_{\scriptscriptstyle \rm m}$ In signal processing and data compression one ignores all but the components with large $a_{\scriptscriptstyle m}$ and there aren't many since

50

Why this is called the discrete Fourier transform

n Complex Fourier series

Given a function f defined on $[0,2\pi]$ the complex Fourier series for f is given by $f(z) = b_0 + b_1 \ e^{i\,z} + b_2 \ e^{2i\,z} \ + \ldots + b_m \ e^{mi\,z} \ + \ldots$ where $\boxed{ b_m = \frac{1}{2\pi} \int\limits_{-\pi}^{2\pi} f(z) \ e^{-mi\,z} \ dz }$

is the component of f of frequency m

 $_{\rm n}$ If we **discretize** this integral using values at n 2π /n apart equally spaced points between 0 and 2π we get

$$\overline{b}_m = \frac{1}{n} \sum_{k=0}^{n-1} f_k \, e^{\cdot 2k m i \pi / n} = \frac{1}{n} \sum_{k=0}^{n-1} f_k \ \omega^{-km} \ \text{where} \ f_k = f(2k \pi / n)$$

just like interpolation!