CSE 421: Introduction to Algorithms

Dealing with NP-completeness

Winter 2005 Paul Beame

- n You might have phrased your problem too generally
 - e.g., in practice, the graphs that actually arise are far from arbitrary
 - maybe they have some special characteristic that allows you to solve the problem in your special case
 - n for example the Independent-Set problem is easy on "interval graphs"
 - ⁿ Exactly the case for interval scheduling!
 - n search the literature to see if special cases already solved

- ⁿ Try to find an approximation algorithm
 - Maybe you can't get the size of the best Vertex
 Cover but you can find one within a factor of 2 of the best
 - ⁿ Given graph G=(V,E), start with an empty cover
 - ⁿ While there are still edges in E left
 - Choose an edge e={u,v} in E and add both u and v to the cover
 - $_{\rm n}\,$ Remove all edges from **E** that touch either **u** or **v**.
 - Edges chosen don't share any vertices so optimal cover size must be at least # of edges chosen

- Polynomial-time approximation algorithms for
 NP-hard problems can sometimes be ruled out unless P=NP
 - E.g. Coloring Problem: Given a graph G=(V,E) find the smallest k such that G has a k-coloring.
 - No approximation ratio better than 4/3 is possible unless P=NP
 - Otherwise you would have to be able to figure out if a 3-colorable graph can be colored in < 4 colors. i.e. if it can be 3-colored

Travelling Sales Problem

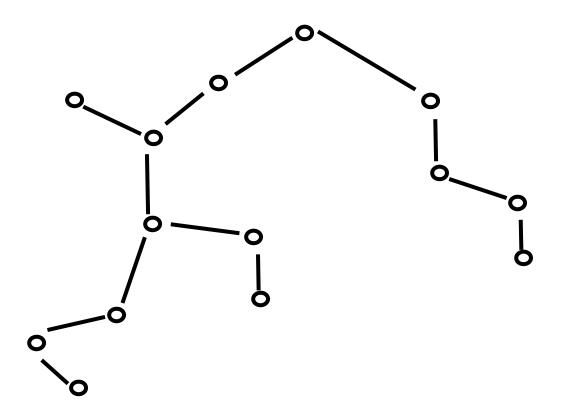
n TSP

Given a weighted graph G find of a smallest weight tour that visits all vertices in G

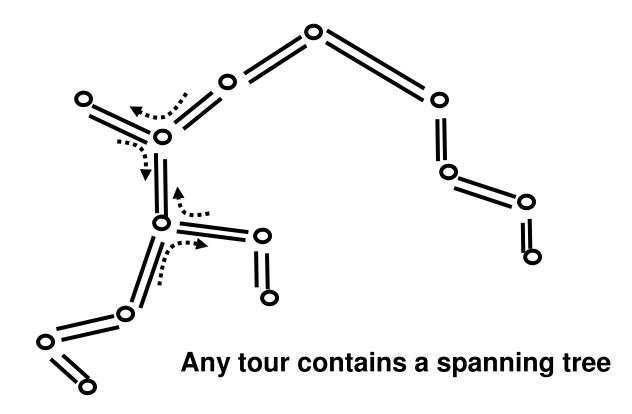
n **NP-hard**

Notoriously easy to obtain close to optimal solutions

Minimum Spanning Tree Approximation



Minimum Spanning Tree Approximation: Factor of 2



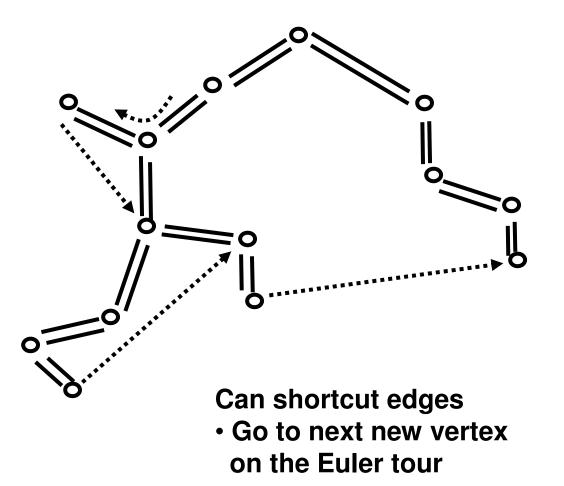
 $MST(G) \leq TOUR_{OPT}(G) \leq 2 \; MST(G) \leq 2 \; TOUR_{OPT}(G)$

Why did this work?

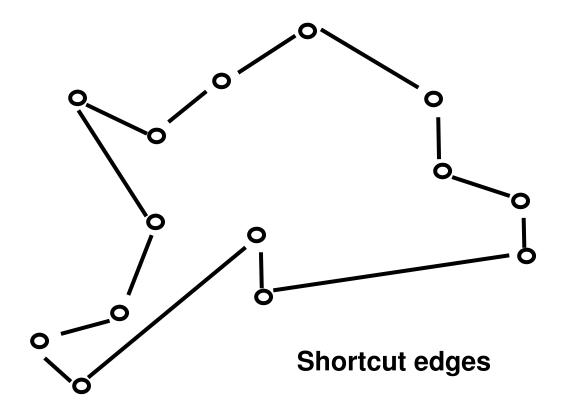
- We found an Euler tour on a graph that used the edges of the original graph (possibly repeated).
- ⁿ The weight of the tour was the total weight of the new graph.
- n Suppose now
 - n All edges possible
 - ⁿ Weights satisfy triangle inequality

n $C(u,w) \leq C(u,v) + C(v,w)$

Minimum Spanning Tree Approximation: Triangle Inequality



Minimum Spanning Tree Approximation: Factor of 2



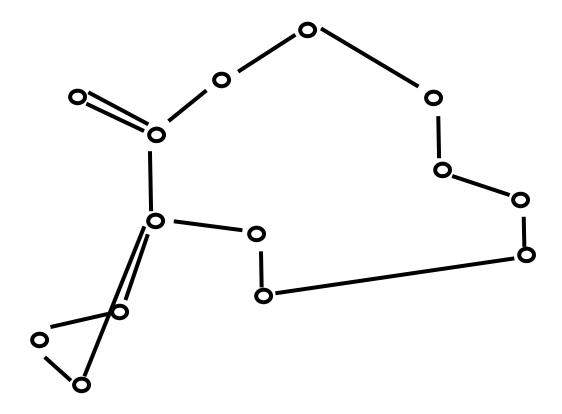
 $TOUR_{OPT}(G) \leq 2 \; MST(G) \leq 2 \; TOUR_{OPT}(G)$

Christofides Algorithm: A factor 3/2 approximation

- n Any Eulerian subgraph of the weighted complete graph will do
 - Eulerian graphs require that all vertices have even degree so
- n Christofides Algorithm
 - n Compute an MST T
 - ⁿ Find the set **O** of odd-degree vertices in **T**
 - Add a minimum-weight perfect matching M on the vertices in
 O to T to make every vertex have even degree
 - ⁿ There are an even number of odd-degree vertices!
 - Use an Euler Tour **E** in $\mathbf{T} \cup \mathbf{M}$ and then shortcut as before

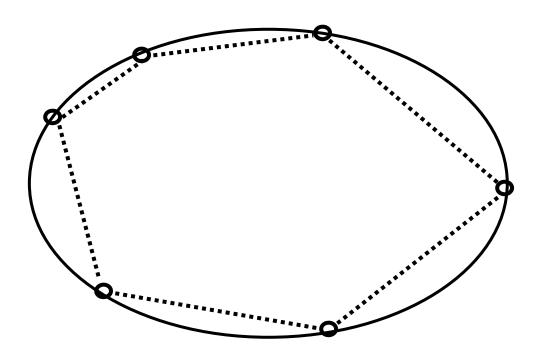
ⁿ Claim: TOUR_{OPT}≤ 1.5 Cost(E)

Christofides Approximation



Christofides Approximation

Any tour costs at least the cost of two matchings on O



Claim: 2 Cost(M) \leq TOUR_{OPT}

Knapsack Problem

- ⁿ For any $\varepsilon > 0$ can get an algorithm that gets a solution within $(1+\varepsilon)$ factor of optimal with running time $O(n^2(1/\varepsilon)^2)$
 - " "Polynomial-Time Approximation Scheme" or PTAS
 - Based on maintaining just the high order
 bits in the dynamic programming solution.

- ⁿ More on approximation algorithms
 - Recent research has classified problems based on what kinds of approximations are possible if P≠NP
 - ⁿ Best: (**1**+ ϵ) factor for any ϵ >**0**.
 - $_{\rm n}$ packing and some scheduling problems, TSP in plane
 - ⁿ Some fixed constant factor > 1, e.g. 2, 3/2, 100
 - ⁿ Vertex Cover, TSP in space, other scheduling problems
 - n $\Theta(\log n)$ factor
 - ⁿ Set Cover, Graph Partitioning problems
 - ⁿ Worst: $\Omega(\mathbf{n}^{1-\varepsilon})$ factor for any $\varepsilon > \mathbf{0}$
 - ⁿ Clique, Independent-Set, Coloring

- ⁿ Try an algorithm that is provably fast "on average".
 - ⁿ To even try this one needs a model of what a typical instance is.
 - ⁿ Typically, people consider "random graphs"
 - n e.g. all graphs with a given # of edges are equally likely
 - ⁿ Problems:
 - n real data doesn't look like the random graphs
 - ⁿ distributions of real data aren't analyzable

- ⁿ Try to search the space of possible hints in a more efficient way and hope it is quick enough
 - n e.g. back-tracking search
 - $_{\tt n}$ For Satisfiability there are 2^n possible truth assignments
 - If we set the truth values one-by-one we might be able to figure out whole parts of the space to avoid,
 - n e.g. After setting $\mathbf{x}_1 \leftarrow \mathbf{1}$, $\mathbf{x}_2 \leftarrow \mathbf{0}$ we don't even need to set \mathbf{x}_3 or \mathbf{x}_4 to know that it won't satisfy $(\neg \mathbf{x}_1 \lor \mathbf{x}_2) \land (\neg \mathbf{x}_2 \lor \mathbf{x}_3) \land (\mathbf{x}_4 \lor \neg \mathbf{x}_3) \land (\mathbf{x}_1 \lor \neg \mathbf{x}_4)$
 - For Satisfiability this seems to run in times like
 2^{n/20} on typical hard instances.
 - n Related technique: **branch-and-bound**

- ⁿ Use heuristic algorithms and hope they give good answers
 - n No guarantees of quality
 - ⁿ Many different types of heuristic algorithms
 - Many different options, especially for optimization problems, such as TSP, where we want the best solution.
 - ⁿ We'll mention several on following slides

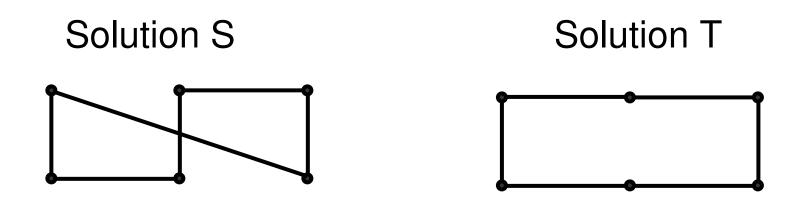
Heuristic algorithms for NP-hard problems

- n local search for optimization problems
 - n need a notion of two solutions being neighbors
 - $_{\rm n}\,$ Start at an arbitrary solution ${\bm S}$
 - While there is a neighbor T of S that is better than S

n **S←T**

- ⁿ Usually fast but often gets stuck in a local optimum and misses the global optimum
 - With some notions of neighbor can take a long time in the worst case

e.g., Neighboring solutions for TSP



Two solutions are neighbors iff there is a pair of edges you can swap to transform one to the other

Heuristic algorithms for NP-hard problems

n randomized local search

- n start local search several times from random starting points and take the best answer found from each point
 - more expensive than plain local search but usually much better answers

n simulated annealing

- like local search but at each step sometimes move to a worse neighbor with some probability
 - probability of going to a worse neighbor is set to decrease with time as, presumably, solution is closer to optimal
 - helps avoid getting stuck in a local optimum but often **slow to converge** (much more expensive than randomized local search)
 - analogy with slow cooling to get to lowest energy state in a crystal (or in forging a metal)

Heuristic algorithms for NP-hard problems

n genetic algorithms

- n view each solution as a **string** (analogy with DNA)
- n maintain a population of good solutions
- n allow **random mutations** of single characters of individual solutions
- n **combine two solutions** by taking part of one and part of another (analogy with crossover in sexual reproduction)
- n get rid of solutions that have the worst values and make multiple copies of solutions that have the best values (analogy with natural selection -- survival of the fittest).
- n little evidence that they work well and they are usually very slow
 - n as much religion as science

Heuristic algorithms

n artificial neural networks

- n based on very elementary model of human neurons
- **Set up a circuit of artificial neurons**
 - each artificial neuron is an analog circuit gate whose computation depends on a set of connection strengths

n Train the circuit

- Adjust the connection strengths of the neurons by giving many positive & negative training examples and seeing if it behaves correctly
- n The network is now ready to use
- useful for ill-defined classification problems such as optical character recognition but not typical cut & dried problems

Other fun directions

- n DNA computing
 - Each possible hint for an NP problem is represented as a string of DNA
 - ⁿ fill a test tube with all possible hints
 - **N** View verification algorithm as a series of tests
 - e.g. checking each clause is satisfied in case of Satisfiability
 - n For each test in turn
 - use lab operations to filter out all DNA strings that fail the test (works in parallel on all strings; uses PCR)
 - ⁿ If any string remains the answer is a YES.
 - Relies on fact that Avogadro's # 6 x 10²³ is large to get enough strings to fit in a test-tube.
 - **Error-prone & so far only problem sizes less than 15!**

Other fun directions

- ⁿ Quantum computing
 - ⁿ Use physical processes at the quantum level to implement weird kinds of circuit gates
 - n unitary transformations
 - Quantum objects can be in a superposition of many pure states at once
 - n can have **n** objects together in a superposition of **2ⁿ** states
 - Each quantum circuit gate operates on the whole superposition of states at once
 - n inherent parallelism
 - Need totally new kinds of algorithms to work well. Theoretically able to factor efficiently but huge practical problems: errors, decoherence.