CSE 421 Algorithms

Richard Anderson Lecture 30 NP-Completeness

NP-Completeness

- A problem X is NP-complete if – X is in NP
 - For every Y in NP, $Y \leq_P X$
- X is a "hardest" problem in NP
- To show X is NP complete, we must show how to reduce every problem in NP to X

Cook's Theorem

- The Circuit Satisfiability Problem is NP-Complete
- Circuit Satisfiability
 - Given a boolean circuit, determine if there is an assignment of boolean values to the input to make the output true

Proof of Cook's Theorem

- Reduce an arbitrary problem Y in NP to X
- Let A be a non-deterministic polynomial time algorithm for Y
- Convert A to a circuit, so that Y is a Yes instance iff and only if the circuit is satisfiable

Populating the NP-Completeness Universe

- Circuit Sat <_P 3-SAT
- 3-SAT <_P Independent Set
- Independent Set <_P Vertex Cover
- 3-SAT <_P Hamiltonian Circuit
- Hamiltonian Circuit <_P Traveling Salesman
- 3-SAT <_P Integer Linear Programming
- 3-SAT <_P Graph Coloring
 3-SAT <_P Subset Sum
- Subset ${\rm Sum} <_{\rm P} {\rm Scheduling}$ with Release times and deadlines

Thm: $HC <_P TSP$

Number Problems

- Subset sum problem
 - Given natural numbers w_1, \ldots, w_n and a target number W, is their a subset that adds up to exactly W
- · Subset sum problem is NP-Complete
- · Subset Sum problem can be solved in O(nW) time

Subset sum problem

- · The reduction to show Subset Sum is NPcomplete involves numbers with n digits
- In that case, the O(nW) algorithm is an exponential time and space algorithm

Course summary What did we cover in the last 30 lectures?

.

•

- Stable Matching
- Models of computation and efficiency •
- Basic graph algorithms
 BFS, Bipartiteness, SCC, Cycles, Topological Sort
 Greedy Algorithms
- Interval Scheduling, HW Scheduling
 Correctness proofs
 Dijkstra's Algorithm
- Minimum Spanning Trees
- Ford Fulkerson, Maxflow/mincut, Applications NP-Completeness

Recurrences

Algorithms

Network Flow

Divide and Conquer

- Closest Pair, FFT

Dynamic Programming

Weighted interval scheduling, subset sum, knapsack, longest common subsequence, shortest paths