CSE 421
Algorithms
Richard Anderson
Lecture 30
NP-Completeness

NP-Completeness

- A problem X is NP-complete if
$-X$ is in NP
- For every Y in NP, $\mathrm{Y}<_{p} \mathrm{X}$
- X is a "hardest" problem in NP
- To show X is NP complete, we must show how to reduce every problem in NP to X

Cook's Theorem

- The Circuit Satisfiability Problem is NPComplete
- Circuit Satisfiability
- Given a boolean circuit, determine if there is an assignment of boolean values to the input to make the output true

Proof of Cook's Theorem

- Reduce an arbitrary problem Y in NP to X
- Let A be a non-deterministic polynomial time algorithm for Y
- Convert A to a circuit, so that Y is a Yes instance iff and only if the circuit is satisfiable

History

- Jack Edmonds
- Identified NP
- Steve Cook
- Cook's Theorem - NP-Completeness
- Dick Karp
- Identified "standard" collection of NP-Complete Problems
- Leonid Levin
- Independent discovery of NP-Completeness in USSR

Hamiltonian Circuit Problem

- Hamiltonian Circuit - a simple cycle including all the vertices of the graph

Populating the NP-Completeness Universe

- Circuit Sat <p 3-SAT
- 3-SAT < ${ }_{p}$ Independent Set
- Independent Set <p Vertex Cover
- 3-SAT $<_{p}$ Hamiltonian Circuit
- Hamiltonian Circuit <p Traveling Salesman
- 3-SAT $<_{p}$ Integer Linear Programming
- 3-SAT <p Graph Coloring
- 3-SAT <p Subset Sum
- Subset Sum $<_{p}$ Scheduling with Release times and deadlines

Minimum cost tour highlighted

Traveling Salesman Problem

- Given a complete graph with edge weights, determine the shortest tour that includes all of the vertices (visit each vertex exactly once, and get back to the starting point)

Number Problems

- Subset sum problem
- Given natural numbers w_{1}, \ldots, w_{n} and a target number W, is their a subset that adds up to exactly W
- Subset sum problem is NP-Complete
- Subset Sum problem can be solved in $\mathrm{O}(\mathrm{nW})$ time

Subset sum problem

- The reduction to show Subset Sum is NPcomplete involves numbers with n digits
- In that case, the $\mathrm{O}(\mathrm{nW})$ algorithm is an exponential time and space algorithm

Course summary

 What did we cover in the last 30 lectures?- Stable Matching
- Models of computation and efficiency
- Basic graph algorithms BFS, Bipartiteness, SCC, Cycles, Topological Sort
- Greedy Algorithms

Interval Scheduling, HW Scheduling

- Correctness proofs
- Dijkstra's Algorithm
- Minimum Spanning Trees
- Recurrences
- Divide and Conquer Algorithms - Closest Pair, FFT
- Dynamic Programming
- Weighted interval scheduling, subset sum, knapsack, longest common subsequence, shortest paths
- Network Flow
- Ford Fulkerson, Applica
- NP-Completeness

