CSE 421 Algorithms

Richard Anderson Lecture 29 NP-Completeness

Sample Problems Independent Set Graph G = (V, E), a subset S of the vertices is independent if there are no edges between vertices in S

Satisfiability

 Given a boolean formula, does there exist a truth assignment to the variables to make the expression true

Definitions

- Boolean variable: x₁, ..., x_n
- Term: x_i or its negation !x_i
- Clause: disjunction of terms $-t_1$ or t_2 or ... t_i
- Problem:
 - Given a collection of clauses $C_1,\ldots,C_k,$ does there exist a truth assignment that makes all the clauses true
 - $-(x_1 \text{ or } !x_2), (!x_1 \text{ or } !x_3), (x_2 \text{ or } !x_3)$

3-SAT

- · Each clause has exactly 3 terms
- Variables x₁, . . ., x_n
- Clauses C_1, \ldots, C_k - $C_j = (t_{j1} \text{ or } t_{j2} \text{ or } t_{j3})$
- Fact: Every instance of SAT can be converted in polynomial time to an equivalent instance of 3-SAT

Theorem: 3-SAT <_P IS

- Build a graph that represents the 3-SAT instance
- Vertices y_i, z_i with edges (y_i, z_i)
 Truth setting
- Vertices u_{j1} , u_{j2} , and u_{j3} with edges (u_{j1}, u_{j2}) , (u_{j2}, u_{j3}) , (u_{j3}, u_{j1}) – Truth testing
- Connections between truth setting and truth testing:
 - If $t_{jl} = x_i$, then put in an edge (u_{jl}, z_i)
 - If $\dot{t_{jl}} = !x_i$, then put in an edge $(\dot{u_{jl}}, y_i)$

Example

$$\begin{split} & C_1 = x_1 \text{ or } x_2 \text{ or } ! x_3 \\ & C_2 = x_1 \text{ or } ! x_2 \text{ or } x_3 \\ & C_3 = ! x_1 \text{ or } x_2 \text{ or } x_3 \end{split}$$

Thm: 3-SAT instance is satisfiable iff there is an IS of size n + k

What is NP?

- Problems solvable in non-deterministic polynomial time . . .
- Problems where "yes" instances have polynomial time checkable certificates

Certificate examples

- Independent set of size K

 The Independent Set
- Satifisfiable formula

 Truth assignment to the variables
- Hamiltonian Circuit Problem
 A cycle including all of the vertices
- K-coloring a graph

 Assignment of colors to the vertices

NP-Completeness

- A problem X is NP-complete if – X is in NP
 - For every Y in NP, $Y \leq_P X$
- X is a "hardest" problem in NP
- If X is NP-Complete, Z is in NP and X <_P Z
 Then Z is NP-Complete

Cook's Theorem

 The Circuit Satisfiability Problem is NP-Complete

Populating the NP-Completeness Universe

- Circuit Sat <_P 3-SAT
- 3-SAT <_P Independent Set
- Independent Set $<_P$ Vertex Cover
- 3-SAT <_P Hamiltonian Circuit
- Hamiltonian Circuit <_P Traveling Salesman
- 3-SAT <P Integer Linear Programming
- 3-SAT <_P Graph Coloring
- 3-SAT <_P Subset Sum
- Subset Sum <_P Scheduling with Release times and deadlines

Thm: HC \leq_{P} TSP