CSE 421 Algorithms

Richard Anderson Lecture 28 NP Completeness

Announcements

• Final Exam

- Monday, December 12, 2:30-4:20 pm, EE1 003
 Closed book, closed notes
- Practice final and answer key available
- HW 10, due Friday, 1:30 pm
- This weeks topic
 - NP-completeness
 - Reading: 8.1-8.8: Skim the chapter, and pay more attention to particular points emphasized in class

Algorithms vs. Lower bounds

- · Algorithmic Theory
 - What we can compute
 - I can solve problem X with resources R
 - Proofs are almost always to give an algorithm that meets the resource bounds

Polynomial Time

- P: Class of problems that can be solved in polynomial time
 - Corresponds with problems that can be solved efficiently in practice
 - Right class to work with "theoretically"

Polynomial time reductions

- Y Polynomial Time Reducible to X
 - Solve problem Y with a polynomial number of computation steps and a polynomial number of calls to a black box that solves X
 - Notations: $Y \leq_P X$

Lemma

 Suppose Y <_P X. If X can be solved in polynomial time, then Y can be solved in polynomial time.

Lemma

 Suppose Y <_P X. If Y cannot be solved in polynomial time, then X cannot be solved in polynomial time.

Sample Problems Independent Set Graph G = (V, E), a subset S of the vertices is independent if there are no edges between vertices in S

Decision Problems

- Theory developed in terms of yes/no problems
 - Independent set
 - Given a graph G and an integer K, does G have an independent set of size at least K

Vertex cover

• Given a graph G and an integer K, does the graph have a vertex cover of size at most K.

IS <_P VC

- Lemma: A set S is independent iff V-S is a vertex cover
- To reduce IS to VC, we show that we can determine if a graph has an independent set of size K by testing for a Vertex cover of size n - K

Satisfiability

 Given a boolean formula, does there exist a truth assignment to the variables to make the expression true

Definitions

- Boolean variable: x₁, ..., x_n
- Term: x_i or its negation !x_i
- Clause: disjunction of terms $-t_1$ or t_2 or ... t_i
- Problem:
 - Given a collection of clauses C1, . . ., Ck, does there exist a truth assignment that makes all the clauses true
 - $-(x_1 \text{ or } !x_2), (!x_1 \text{ or } !x_3), (x_2 \text{ or } !x_3)$

3-SAT

- · Each clause has exactly 3 terms
- Variables x_1, \ldots, x_n
- Clauses C_1, \ldots, C_k - $C_j = (t_{j1} \text{ or } t_{j2} \text{ or } t_{j3})$
- Fact: Every instance of SAT can be converted in polynomial time to an equivalent instance of 3-SAT

Theorem: 3-SAT <_P IS

- Build a graph that represents the 3-SAT instance
- Vertices y_i, z_i with edges (y_i, z_i)
 Truth setting
- Vertices $u_{j1},\,u_{j2},\,\text{and}\,\,u_{j3}$ with edges $(u_{j1},\,u_{j2}),\,(u_{j2},u_{j3}),\,(u_{j3},\,u_{j1})$
- Truth testing
 Connections between truth setting and truth testing:
 - If $t_{jl} = x_i$, then put in an edge (u_{jl}, z_i)
 - If $\dot{t_{jl}} = !x_i$, then put in an edge $(\dot{u_{jl}}, y_i)$

Example

$$\begin{split} & C_1 = x_1 \text{ or } x_2 \text{ or } ! x_3 \\ & C_2 = x_1 \text{ or } ! x_2 \text{ or } x_3 \\ & C_3 = ! x_1 \text{ or } x_2 \text{ or } x_3 \end{split}$$

Thm: 3-SAT instance is satisfiable iff there is an IS of size n + k