CSE 421
Algorithms
Richard Anderson
Lecture 27
Network Flow Applications

Airplane Scheduling

- Given an airline schedule, and starting locations

Given an airline schedule, and starting locations
for the planes, is it possible to use a fixed set of planes to satisfy the schedule.

- Schedule
- [segments] Departure, arrival pairs (cities and times)
- Approach
- Construct a circulation problem where paths of flow
give segments flown by each plane

Today's topics

- More network flow reductions
- Airplane scheduling
- Image segmentation
- Baseball elimination
\qquad
- Each segment, S_{i}, is represented as a pair of vertices ($\mathrm{d}_{\mathrm{i}}, \mathrm{a}_{\mathrm{i}}$, for departure and arrival), with an edge between them.

- Add an edge between a_{i} and d_{i} if S_{i} is compatible with S_{j}.

Graph representation

Compatible segments

- Segments S_{1} and S_{2} are compatible if the same plane can be used on S_{1} and S_{2}
- End of S_{1} equals start of S_{2}, and enough time for turn around between arrival and departure times
- End of S_{1} is different from S_{2}, but there is enough time to fly between cities

Setting up a flow problem

$\stackrel{-1}{8}$
($)$
$\stackrel{1}{\odot}$

Image Segmentation

- Separate foreground from background

Image analysis

- a_{i} : value of assigning pixel i to the foreground
- b_{i} : value of assigning pixel i to the background
- $p_{i j}$: penalty for assigning i to the foreground, j to the background or vice versa
- A: foreground, B: background
- $Q(A, B)=\Sigma_{\{i \text { in } A\}} a_{i}+\Sigma_{\{j \text { in } B\}} b_{j}+\Sigma_{\{(i, j) \text { in } E, i \text { in } A, j \text { in } B\}} p_{i j}$

Baseball elimination

- Can the Dung Beetles win the league?
- Remaining games:
- AB, AC, AD, AD, AD, $B C, B C, B C, B D, C D$

	W	L
Ants	4	2
Bees	4	2
Cockroaches	3	3
Dung Beetles	1	5

Baseball elimination

- Can the Fruit Flies win the league?
- Remaining games:
- AC, AD, AD, AD, AF, $B C, B C, B C, B C, B C$ BD, BE, BE, BE, BE, BF, CE, CE, CE, CF, $C F, D E, D F, E F, E F$

	W	L
Ants	17	12
Bees	16	7
Cockroaches	16	7
Dung Beetles	14	13
Earthworms	14	10
Fruit Flies	12	15

Assume Fruit Flies win remaining games

- Fruit Flies are tied for first place if no team wins more than 19 games
- Allowable wins
- Ants (2)
- Bees (3)
- Cockroaches (3)
- Dung Beetles (5)
- Earthworms (5)
- 18 games to play

	W	L
Ants	17	13
Bees	16	8
Cockroaches	16	9
Dung Beetles	14	14
Earthworms	14	12
Fruit Flies	19	15

Network flow applications summary

- Bipartite Matching
- Disjoint Paths
- Airline Scheduling
- Survey Design
- Baseball Elimination
- Project Selection
- Image Segmentation

Remaining games

$A C, A D, A D, A D, B C, B C, B C, B C, B C, B D, B E, B E, B E, B E, C E, C E, C E, D E$

