CSE 421
Algorithms
Richard Anderson
Lecture 26
Open Pit Mining

Open Pit Mining

- Each unit of earth has a profit (possibly negative)
- Getting to the ore below the surface requires removing the dirt above
- Test drilling gives reasonable estimates of costs
- Plan an optimal mining operation

Generalization

- Precedence graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$
- Each v in V has a profit $p(v)$
- A set F if feasible if when w in F, and (v, w) in E, then v in F.
- Find a feasible set to maximize the profit

Today's topics

- Open Pit Mining Problem
- Task Selection Problem
- Reduction to Min cut problem

Min cut algorithm for profit maximization

- Construct a flow graph where the minimum cut identifies a feasible set that maximizes profit

Precedence graph construction

- Precedence graph G=(V,E)
- Each edge in E has infinite capacity
- Add vertices s, t
- Each vertex in V is attached to s and t with finite capacity edges

The sink side of the cut is a feasible set

- No edges permitted from S to T
- If a vertex is in T, all of its ancestors are in T

Enumerate all finite s,t cuts and show their capacities

Show a finite value cut with at least two vertices on each side of the cut

Student Submission

Setting the costs

- If $p(v)>0$,
$-\operatorname{cap}(\mathrm{v}, \mathrm{t})=\mathrm{p}(\mathrm{v})$
$-\operatorname{cap}(\mathrm{s}, \mathrm{v})=0$
- If $p(v)<0$
$-\operatorname{cap}(\mathrm{s}, \mathrm{v})=-\mathrm{p}(\mathrm{v})$
$-\operatorname{cap}(v, t)=0$
- If $p(v)=0$
$-\operatorname{cap}(\mathrm{s}, \mathrm{v})=0$
$-\operatorname{cap}(\mathrm{v}, \mathrm{t})=0$

Minimum cut gives optimal solution

Computing the Profit

- $\operatorname{Cost}(W)=\Sigma_{\{w \text { in } w ; p(w)<0\}}-p(w)$
- Benefit $\left.(W)=\Sigma_{\{w \text { in } w ; ~} p(w)>0\right\} p(w)$
- Profit $(\mathrm{W})=\operatorname{Benefit}(\mathrm{W})-\operatorname{Cost}(\mathrm{W})$
- Maximum cost and benefit
$-\mathrm{C}=\operatorname{Cost}(\mathrm{V})$
$-\mathrm{B}=$ Benefit(V)

Express Cap(S,T) in terms of B, C, $\operatorname{Cost}(\mathrm{T})$, Benefit(T), and $\operatorname{Profit}(\mathrm{T})$

Student

Summary

- Construct flow graph
- Infinite capacity for precedence edges
- Capacities to source/sink based on cost/benefit
- Finite cut gives a feasible set of tasks
- Minimizing the cut corresponds to maximizing the profit
- Find minimum cut with a network flow algorithm

