CSE 421 Algorithms

Richard Anderson Lecture 25 Network Flow Applications

Today's topics

- · Problem Reductions
- Circulations
- · Lowerbound constraints on flows
- · Survey design
- · Airplane scheduling

Problem Reduction

- · Reduce Problem A to Problem B
 - Convert an instance of Problem A to an instance Problem B
 - Use a solution of Problem B to get a solution to Problem A
- Practical
 - Use a program for Problem B to solve Problem A
- Theoretical
 - Show that Problem B is at least as hard as Problem A

Problem Reduction Examples

 Reduce the problem of finding the Maximum of a set of integers to finding the Minimum of a set of integers

Undirected Network Flow

- · Undirected graph with edge capacities
- Flow may go either direction along the edges (subject to the capacity constraints)

Circulation Problem

- Directed graph with capacities, c(e) on the edges, and demands d(v) on vertices
- Find a flow function that satisfies the capacity constraints and the vertex demands
 - $0 \le f(e) \le c(e)$
 - $f^{in}(v) f^{out}(v) = d(v)$
- Circulation facts:
 - Feasibility problem
 - d(v) < 0: source; d(v) > 0: sink
 - Must have $\Sigma_{\rm v} {\rm d}({\rm v}) {=} 0$ to be feasible

Find a circulation in the following graph

Reducing the circulation problem to Network flow

Formal reduction

- · Add source node s, and sink node t
- For each node v, with d(v) < 0, add an edge from s to v with capacity -d(v)
- For each node v, with d(v) > 0, add an edge from v to t with capacity d(v)
- Find a maximum s-t flow. If this flow has size Σ_vcap(s,v) than the flow gives a circulation satisifying the demands

Circulations with lowerbounds on flows on edges

- Each edge has a lowerbound I(e).
 - The flow f must satisfy I(e) <= f(e) <= c(e)

Removing lowerbounds on edges

Lowerbounds can be shifted to the demands

Formal reduction

- L_{in}(v): sum of lowerbounds on incoming edges
- L_{out}(v): sum of lowerbounds on outgoing edges
- Create new demands d' and capacities c' on vertices and edges
 - $-d'(v) = d(v) + I_{out}(v) I_{in}(v)$
 - -c'(e) = c(e) l(e)

Application

- · Customized surveys
 - Ask customers about products
 - Only ask customers about products they use
 - Limited number of questions you can ask each customer
 - Need to ask a certain number of customers about each product
 - Information available about which products each customer has used

Details

- Customer C₁, . . . , C_n
- Products P₁, . . . , P_m
- S_i is the set of products used by C_i
- Customer C_i can be asked between c_i and c'_i questions
- Questions about product P_j must be asked on between p_i and p'_i surveys

Circulation construction

Airplane Scheduling

- Given an airline schedule, and starting locations for the planes, is it possible to use a fixed set of planes to satisfy the schedule.
- Schedule
 - [segments] Departure, arrival pairs (cities and times)

Compatible segments

- Segments S₁ and S₂ are compatible if the same plane can be used on S₁ and S₂
 - End of S₁ equals start of S₂, and enough time for turn around between arrival and departure times
 - End of S₁ is different from S₂, but there is enough time to fly between cities

Graph representation

 Each segment, S_i, is represented as a pair of vertices (d_i, a_i, for departure and arrival), with an edge between them.

 d_i a_i

 Add an edge between a_i and d_j if S_i is compatible with S_i.

 (a_i) (d_i)

Setting up a flow problem (d) 1,1 (a) 0,1 (a) (P)

Result

• The planes can satisfy the schedule iff there is a feasible circulation