CSE 421 Algorithms

Richard Anderson Lecture 23 Network Flow

Review

- · Network flow definitions
- · Flow examples
- · Augmenting Paths
- · Residual Graph
- Ford Fulkerson Algorithm
- Cuts
- Maxflow-MinCut Theorem

Network Flow Definitions

- Flowgraph: Directed graph with distinguished vertices s (source) and t (sink)
- Capacities on the edges, c(e) >= 0
- Problem, assign flows f(e) to the edges such that:
 - 0 <= f(e) <= c(e)
 - Flow is conserved at vertices other than s and t
 Flow conservation: flow going into a vertex equals the flow going out
 - The flow leaving the source is a large as possible

Residual Graph

- · Flow graph showing the remaining capacity
- Flow graph G, Residual Graph G_R
 - G: edge e from u to v with capacity c and flow f
 - $-G_R$: edge e' from u to v with capacity c -f
 - $G_{\mathsf{R}}\!\!:$ edge e'' from v to u with capacity f

Proof

- Add b units of flow along the path P
- What do we need to verify to show we have a valid flow after we do this?
 - -
 - _

Ford-Fulkerson Algorithm (1956)

while not done

Construct residual graph G_R Find an s-t path P in G_R with capacity b > 0

Add b units along in G

If the sum of the capacities of edges leaving S is at most C, then the algorithm takes at most C iterations

- Ford-Fulkerson algorithm finds a flow where the residual graph is disconnected, hence FF finds a maximum flow.
- If we want to find a minimum cut, we begin by looking for a maximum flow.

Better methods of finding augmenting paths

- Find the maximum capacity augmenting path
 - O(m²log(C)) time
- Find the shortest augmenting path – O(m²n)
- Find a blocking flow in the residual graph – O(mnlog n)