CSE 421
Algorithms
Richard Anderson
Lecture 22
Network Flow

Outline

- Network flow definitions
- Flow examples
- Augmenting Paths
- Residual Graph
- Ford Fulkerson Algorithm
- Cuts
- Maxflow-MinCut Theorem

Network Flow Definitions

- Flowgraph: Directed graph with distinguished vertices s (source) and t (sink)
- Capacities on the edges, $c(e)>=0$
- Problem, assign flows $f(e)$ to the edges such that:
- $0<=\mathrm{f}(\mathrm{e})<=\mathrm{c}(\mathrm{e})$
- Flow is conserved at vertices other than s and t
- Flow conservation: flow going into a vertex equals the flow going out
- The flow leaving the source is a large as possible

Find a maximum flow

Student
Submissi

Flow Example

Find a maximum flow

Augmenting Path Algorithm

- Augmenting path
- Vertices $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{k}}$
- $v_{1}=s, v_{k}=t$
- Possible to add b units of flow between v_{j} and v_{j+1} for $\mathrm{j}=1$... k-1

Residual Graph

- Flow graph showing the remaining capacity
- Flow graph G, Residual Graph G_{R}
- G: edge e from u to v with capacity c and flow f
$-G_{R}$: edge e' from u to v with capacity $c-f$
$-G_{R}$: edge e" from v to u with capacity f

Find two augmenting paths

Student

Augmenting Path Lemma

- Let $P=v_{1}, v_{2}, \ldots, v_{k}$ be a path from s to t with minimum capacity b in the residual graph.
- b units of flow can be added along the path P in the flow graph.

