

Announcements

- Friday, 11/18, Class will meet in CSE 305
- Reading 7.1-7.3, 7.5-7.6
- Section 7.4 will not be covered

Find the shortest paths from v with exactly k edges

Express as a recurrence

- $\mathrm{Opt}_{\mathrm{k}}(\mathrm{w})=\min _{\mathrm{x}}\left[\mathrm{Opt}_{\mathrm{k}-1}(\mathrm{x})+\mathrm{c}_{\mathrm{xw}}\right]$
- Opt $\mathrm{t}_{0}(\mathrm{w})=0$ if $\mathrm{v}=\mathrm{w}$ and infinity otherwise

Algorithm, Version 2
foreach w
$\mathrm{M}[0, \mathrm{w}]=$ infinity;
$\mathrm{m}[0, \mathrm{v}]=0$;
for $\mathrm{i}=1$ to $\mathrm{n}-1$
foreach w
$M[i, w]=\min \left(M[i-1, w], \min _{x}(M[i-1, x]+\operatorname{cost}[x, w])\right)$

Algorithm, Version 3

foreach w
$M[w]=$ infinity;
$\mathrm{M}[\mathrm{v}]=0$;
for $\mathrm{i}=1$ to $\mathrm{n}-1$
foreach w
$M[w]=\min \left(M[w], \min _{x}(M[x]+\operatorname{cost}[x, w])\right)$

Correctness Proof for Algorithm 3

- Key lemma - at the end of iteration i , for all w , M[w] <= M[i, w];
- Reconstructing the path:
- Set $P[w]=x$, whenever $M[w]$ is updated from vertex x

If the pointer graph has a cycle, then the graph has a negative cost cycle

- If $P[w]=x$ then $M[w]>=M[x]+\operatorname{cost}(x, w)$
- Equal after update, then $M[x]$ could be reduced
- Let $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \mathrm{v}_{\mathrm{k}}$ be a cycle in the pointer graph with $\left(v_{k}, v_{1}\right)$ the last edge added
- Just before the update
- $M\left[v_{j}\right]>=M\left[v_{j+1}\right]+\operatorname{cost}\left(v_{j+1}, v_{j}\right)$ for $j<k$
- $M\left[v_{k}\right]>M\left[v_{1}\right]+\operatorname{cost}\left(v_{1}, v_{k}\right)$
- Adding everything up

$\cdot 0>\operatorname{cost}\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)+\operatorname{cost}\left(\mathrm{v}_{2}, \mathrm{v}_{3}\right)+\ldots+\operatorname{cost}\left(\mathrm{v}_{\mathrm{k}}, \mathrm{v}_{1}\right)$

Algorithm 2 vs Algorithm 3

Negative Cycles

- If the pointer graph has a cycle, then the graph has a negative cycle
- Therefore: if the graph has no negative cycles, then the pointer graph has no negative cycles

Finding negative cost cycles

- What if you want to find negative cost cycles?

