CSE 421 Algorithms

Richard Anderson Lecture 20 Space Efficient LCS

Longest Common Subsequence

- C=c₁...c_g is a subsequence of A=a₁...a_m if C can be obtained by removing elements from A (but retaining order)
- LCS(A, B): A maximum length sequence that is a subsequence of both A and B
- Wednesday's Result:
 O(mn) time, O(mn) space LCS Algorithm
- Today's Result:
 O(mn) time, O(m+n) space LCS Algorithm

Digression: String Alignment Problem

Align sequences with gaps
 CAT TGA AT

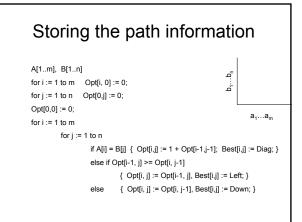
CAGAT AGGA

- Charge $\delta_{\textbf{x}}$ if character x is unmatched
- Charge γ_{xy} if character x is matched to character y
- · Find alignment to minimize sum of costs

Optimization Recurrence for the String Alignment Problem

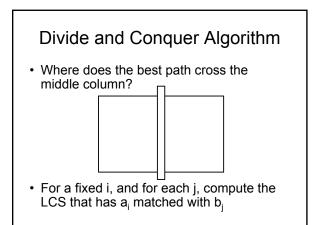
- Charge δ_x if character x is unmatched
- Charge γ_{xy} if character x is matched to character y
- $A = a_1 a_2 \dots a_m$; $B = b_1 b_2 \dots b_n$
- Opt[j, k] is the value of the minimum cost alignment $a_1a_2...a_i$ and $b_1b_2...b_k$

Dynamic Programming Computation



Observations about the Algorithm

- The computation can be done in O(m+n) space if we only need one column of the Opt values or Best Values
- The algorithm can be run from either end of the strings



Constrained LCS

- LCS_{i,j}(A,B): The LCS such that

 a₁,...,a_i paired with elements of b₁,...,b_j
 a_{i+1},...,a_m paired with elements of b_{i+1},...,b_n
- LCS_{4,3}(abbacbb, cbbaa)

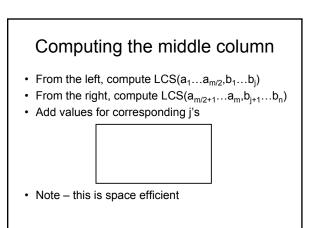
A = RRSSRTTRTS B=RTSRRSTST

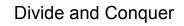
Compute $LCS_{5,0}(A,B)$, $LCS_{5,1}(A,B)$, $LCS_{5,2}(A,B)$,..., $LCS_{5,9}(A,B)$

A = RRSSRTTRTS B=RTSRRSTST

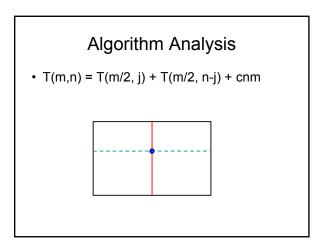
Compute $LCS_{5,0}(A,B)$, $LCS_{5,1}(A,B)$, $LCS_{5,2}(A,B)$,..., $LCS_{5,9}(A,B)$

j	left	right
0	0	3
1	1	3
	1	3
2 3 4	2	3
	3	3
5	3	2
6	3	2
7	3	1
8	4	1
9	4	0

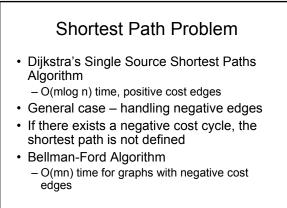




- $A = a_1,...,a_m$ $B = b_1,...,b_n$
- Find j such that
 - LCS($a_1 \dots a_{m/2}, b_1 \dots b_j$) and
 - $LCS(a_{m/2+1} \hdots a_m, b_{j+1} \hdots b_n)$ yield optimal solution
- Recurse



Prove by induction that $T(m,n) \le 2cmn$



Lemma

- If a graph has no negative cost cycles, then the shortest paths are simple paths
- Shortest paths have at most n-1 edges

Shortest paths with a fixed number of edges

• Find the shortest path from v to w with exactly k edges

Express as a recurrence

- Opt_k(w) = min_x [Opt_{k-1}(x) + c_{xw}]
- Opt₀(w) = 0 if v=w and infinity otherwise

Algorithm, Version 1

foreach w M[0, w] = infinity; M[0, v] = 0; for i = 1 to n-1 foreach w $M[i, w] = min_v(M[i-1, x] + cost[x, w]);$

Algorithm, Version 2

foreach w

M[0, w] = infinity; M[0, v] = 0; for i = 1 to n-1 foreach w M[i, w] = min(M[i-1, w], min_x(M[i-1,x] + cost[x,w]))

Algorithm, Version 3

foreach w M[w] = infinity;

M[v] = 0; for i = 1 to n-1

> for each w $M[w] = min(M[w], min_x(M[x] + cost[x,w]))$

Correctness Proof for Algorithm 3

- Key lemma at the end of iteration i, for all w, M[w] <= M[i, w];
- Reconstructing the path:
 - Set P[w] = x, whenever M[w] is updated from vertex x

If the pointer graph has a cycle, then the graph has a negative cost cycle If P[w] = x then M[w] >= M[x] + cost(x,w) - Equal after update, then M[x] could be reduced Let v₁, v₂,...v_k be a cycle in the pointer reduced

- graph with (v_k, v_1) the last edge added – Just before the update
 - $M[v_j] \ge M[v_{j+1}] + cost(v_{j+1}, v_j)$ for j < k• $M[v_k] > M[v_1] + cost(v_1, v_k)$ - Adding everything up
 - 0 > cost(v_1, v_2) + cost(v_2, v_3) + ... + cost(v_k, v_1)

Negative Cycles

- If the pointer graph has a cycle, then the graph has a negative cycle
- Therefore: if the graph has no negative cycles, then the pointer graph has no negative cycles

Finding negative cost cycles

• What if you want to find negative cost cycles?

