CSE 421
Algorithms
Richard Anderson

Lecture 20
Space Efficient LCS

Longest Common Subsequence

* C=c;...cy is a subsequence of A=a;...a,, if
C can be obtained by removing elements
from A (but retaining order)

* LCS(A, B): A maximum length sequence
that is a subsequence of both A and B

» Wednesday’s Result:

— O(mn) time, O(mn) space LCS Algorithm

* Today’s Result:

— O(mn) time, O(m+n) space LCS Algorithm

Digression:
String Alignment Problem

Align sequences with gaps
CAT TGA AT

CAGAT AGGA

Charge §, if character x is unmatched

Charge v,, if character x is matched to
character y

Find alignment to minimize sum of costs

Optimization Recurrence for the
String Alignment Problem

 Charge §, if character x is unmatched

+ Charge v,, if character x is matched to
charactery

* A=aja,...a,; B=Dbb,...b,

Opt[j, k] is the value of the minimum cost
alignment a,a,...a; and b,b,...b

Dynamic Programming

Computation
%%
%Y
%Y
%Y
%Y
ST

Storing the path information

Al1.m], B[1..n] <

Q
fori:=1tom Optfi, 0] := 0; :
forj:=1ton Opt[0,j] := 0;

Opt[0,0] := 0;

b,

fori:z=1tom BreeEim
forj:==1ton
if Ali] = B[j] { Opt[i,j] := 1 + Opti-1,j-1]; Best[i,j] := Diag; }
else if Opt[i-1, j] >= Opt[i, j-1]

{ Optli, j] := Opt[i-1, j], Best[i,j] := Left; }
else { Optli, j] := Opti, j-1], Best[i,j] := Down; }

Observations about the Algorithm

» The computation can be done in O(m+n)
space if we only need one column of the
Opt values or Best Values

* The algorithm can be run from either end
of the strings

Divide and Conquer Algorithm

* Where does the best path cross the
middle column? —

« For a fixed i, and for each j, compute the
LCS that has a; matched with b

Constrained LCS

* LCS;(A,B): The LCS such that
—ay,...,a, paired with elements of by,...,b;

* LCS, ;(abbacbb, cbbaa)

A = RRSSRTTRTS
B=RTSRRSTST

Compute LCS5o(A,B), LCSs ;(A,B), LCSs 5(AB),...,LCS;4(A,B)

A = RRSSRTTRTS
B=RTSRRSTST

Compute LCS; (A,B), LCS; 4(AB), LCS5,(A,B),...,LCSs o(A,B)

left | right
0

olo(N|lola|blwlN|a|o|—
Bl lw|lw|w|w[Nv|=a]=
ol IN|IN|w|lw|lw|w|w

Computing the middle column

* From the left, compute LCS(a;...an,,b4...b)
* From the right, compute LCS(an541---8m;0js1---by)
» Add values for corresponding j's

* Note - this is space efficient

Divide and Conquer

*A=a,,..a, B=Db,,...,b,

» Find j such that
—LCS(ay...ay,, by...b) and
—LCS(anp41---8mjs1---by) yield optimal solution

* Recurse

Algorithm Analysis

* T(m,n) = T(M/2, j) + T(M/2, n-j) + cnm

Prove by induction that
T(m,n) <= 2cmn

Shortest Path Problem

* Dijkstra’s Single Source Shortest Paths
Algorithm
— O(mlog n) time, positive cost edges

* General case — handling negative edges

« |f there exists a negative cost cycle, the
shortest path is not defined

» Bellman-Ford Algorithm

— O(mn) time for graphs with negative cost
edges

Lemma

« If a graph has no negative cost cycles,
then the shortest paths are simple paths

» Shortest paths have at most n-1 edges

Shortest paths with a fixed number
of edges

 Find the shortest path from v to w with
exactly k edges

Express as a recurrence Algorithm, Version 1

. Optk(W) = minx [Optk_1 (X) + CXW] foreach w
* Opt,(w) = 0 if v=w and infinity otherwise o F";'_["* w1 = infiniy:

fori=1ton-1
foreach w

MIi, w] = min,(M[i-1,x] + cost[x,w]);

Algorithm, Version 2 Algorithm, Version 3
foreach w foreach w
M[O, w] = infinity; M[w] = infinity;
M[O, v] = 0; M[v] = 0;
fori=1ton-1 fori=1ton-1
foreach w foreach w
M[i, w] = min(M[i-1, w], min,(M[i-1,x] + cost[x,w])) M[w] = min(M[w], min (M[x] + cost[x,w]))

If the pointer graph has a cycle, then

Correctness Proof for Algorithm 3 the graph has a negative cost cycle

+ Key lemma — at the end of iteration i, for * If P[w] = x then M[w] >= M[x] + cost(x,w)
all w, M[w] <= M[i, w]; — Equal after update, then M[x] could be
reduced

* Letvy, v,,...v, be a cycle in the pointer
graph with (v,,v,) the last edge added

* Reconstructing the path: — Just before the update ve |

— Set P[w] = x, whenever M[w] is updated from * Mlv] >= M[v;,4] + cost(v;,4, v;) for j < k ! ‘
vertex x * M[v,] > M[v,] + cost(v,, v,)

— Adding everything up v, € Vs

« 0> cost(vq,V,) + cost(v,,vs) + ... + cost(v, v,)

Negative Cycles Finding negative cost cycles

« If the pointer graph has a cycle, then the » What if you want to find negative cost cycles?

graph has a negative cycle

» Therefore: if the graph has no negative
cycles, then the pointer graph has no
negative cycles

