CSE 421
Algorithms
Richard Anderson
Lecture 20
Space Efficient LCS

Longest Common Subsequence

- $C=c_{1} \ldots c_{g}$ is a subsequence of $A=a_{1} \ldots a_{m}$ if C can be obtained by removing elements from A (but retaining order)
- LCS(A, B): A maximum length sequence that is a subsequence of both A and B
- Wednesday's Result:
- O(mn) time, O(mn) space LCS Algorithm
- Today's Result:
- $\mathrm{O}(\mathrm{mn})$ time, $\mathrm{O}(\mathrm{m}+\mathrm{n})$ space LCS Algorithm

Optimization Recurrence for the String Alignment Problem

- Charge δ_{x} if character x is unmatched
- Charge $\gamma_{x y}$ if character x is matched to character y
- $A=a_{1} a_{2} \ldots a_{m} ; B=b_{1} b_{2} \ldots b_{n}$
- Opt[j, k$]$ is the value of the minimum cost alignment $a_{1} a_{2} \ldots a_{j}$ and $b_{1} b_{2} \ldots b_{k}$
- Charge δ_{x} if character x is unmatched
- Charge γ_{xy} if character x is matched to character y
- Find alignment to minimize sum of costs

Dynamic Programming Computation

Storing the path information

```
A[1..m], B[1..n]
```

for $\mathrm{i}:=1$ to $\mathrm{m} \quad$ Opt[i, 0] := 0
for $\mathrm{j}:=1$ to $\mathrm{n} \quad \operatorname{Opt}[0, \mathrm{j}]:=0$;
Opt $[0,0]:=0$;
for $\mathrm{i}:=1$ to m
for $\mathrm{j}:=1$ to n
if $A[i]=B[j]\{$ Opt $[i, j]:=1+$ Opt[i-1,j-1]; Best[i,j] := Diag; \}
else if Opt[i-1, j] >= Opt[i, j-1]
\{ Opt[i, j]:= Opt[i-1, j], Best[i,j] := Left; \}
else $\quad\{$ Opt[i, j] := Opt[i, j-1], Best[i,j] := Down; \}

Observations about the Algorithm

- The computation can be done in $\mathrm{O}(\mathrm{m}+\mathrm{n})$ space if we only need one column of the Opt values or Best Values
- The algorithm can be run from either end of the strings

Constrained LCS

- $\operatorname{LCS}_{\mathrm{ij}}(\mathrm{A}, \mathrm{B})$: The LCS such that
- a_{1}, \ldots, a_{i} paired with elements of b_{1}, \ldots, b_{j}
$-a_{i+1}, \ldots a_{m}$ paired with elements of b_{j+1}, \ldots, b_{n}
- $\operatorname{LCS}_{4,3}($ abbacbb, cbbaa)

A = RRSSRTTRTS $\mathrm{B}=$ RTSRRSTST

Compute $\operatorname{LCS}_{5,0}(\mathrm{~A}, \mathrm{~B}), \mathrm{LCS}_{5,1}(\mathrm{~A}, \mathrm{~B}), \mathrm{LCS}_{5,2}(\mathrm{~A}, \mathrm{~B}), \ldots, \mathrm{LCS}_{5,9}(\mathrm{~A}, \mathrm{~B})$

j	left	right
0	0	3
1	1	3
2	1	3
3	2	3
4	3	3
5	3	2
6	3	2
7	3	1
8	4	1
9	4	0

Divide and Conquer Algorithm

- Where does the best path cross the middle column?

- For a fixed i , and for each j , compute the LCS that has a_{i} matched with b_{j}

A = RRSSRTTRTS $B=R T S R R S T S T$

Compute $\operatorname{LCS}_{5,0}(\mathrm{~A}, \mathrm{~B}), \mathrm{LCS}_{5,1}(\mathrm{~A}, \mathrm{~B}), \operatorname{LCS}_{5,2}(\mathrm{~A}, \mathrm{~B}), \ldots, \mathrm{LCS}_{5,9}(\mathrm{~A}, \mathrm{~B})$

Computing the middle column

- From the left, compute $\operatorname{LCS}\left(\mathrm{a}_{1} \ldots \mathrm{a}_{\mathrm{m} / 2}, \mathrm{~b}_{1} \ldots \mathrm{~b}_{\mathrm{j}}\right)$
- From the right, compute $\operatorname{LCS}\left(a_{m / 2+1} \ldots a_{m}, b_{j+1} \ldots b_{n}\right)$
- Add values for corresponding j's

- Note - this is space efficient

Divide and Conquer

- $A=a_{1}, \ldots, a_{m} \quad B=b_{1}, \ldots, b_{n}$
- Find j such that
$-\operatorname{LCS}\left(a_{1} \ldots a_{m / 2}, b_{1} \ldots b_{j}\right)$ and
$-\operatorname{LCS}\left(a_{m / 2+1} \ldots a_{m}, b_{j+1} \ldots b_{n}\right)$ yield optimal solution
- Recurse

Prove by induction that $\mathrm{T}(\mathrm{m}, \mathrm{n})<=2 \mathrm{cmn}$

Algorithm Analysis

- $T(m, n)=T(m / 2, j)+T(m / 2, n-j)+c n m$

Shortest Path Problem

- Dijkstra's Single Source Shortest Paths Algorithm
- $\mathrm{O}(\operatorname{mlog} \mathrm{n})$ time, positive cost edges
- General case - handling negative edges
- If there exists a negative cost cycle, the shortest path is not defined
- Bellman-Ford Algorithm
- O(mn) time for graphs with negative cost edges

Shortest paths with a fixed number of edges

- Find the shortest path from v to w with exactly k edges

Express as a recurrence

- $\mathrm{Opt}_{\mathrm{k}}(\mathrm{w})=\min _{\mathrm{x}}\left[\mathrm{Opt}_{\mathrm{k}-1}(\mathrm{x})+\mathrm{c}_{\mathrm{xw}}\right]$
- Opt $t_{0}(\mathrm{w})=0$ if $\mathrm{v}=\mathrm{w}$ and infinity otherwise

Algorithm, Version 2

foreach w
$\mathrm{M}[0, \mathrm{w}]=$ infinity;
$\mathrm{M}[\mathrm{O}, \mathrm{v}]=0$;
for $\mathrm{i}=1$ to $\mathrm{n}-1$
foreach w
$M[i, w]=\min \left(M[i-1, w], \min _{x}(M[i-1, x]+\operatorname{cost}[x, w])\right)$

Correctness Proof for Algorithm 3

- Key lemma - at the end of iteration i, for all w, M[w] <= M[i,w];
- Reconstructing the path:
- Set $P[w]=x$, whenever $M[w]$ is updated from vertex x

Algorithm, Version 1
foreach w
$\mathrm{M}[0, w]=$ infinity
$\mathrm{M}[0, \mathrm{v}]=0$;
for $\mathrm{i}=1$ to $\mathrm{n}-1$
foreach w
$M[i, w]=\min _{x}(M[i-1, x]+\operatorname{cost}[x, w]) ;$

Algorithm, Version 3

foreach w
$M[w]=$ infinity;
$\mathrm{M}[\mathrm{v}]=0$;
for $\mathrm{i}=1$ to $\mathrm{n}-1$
foreach w
$M[w]=\min \left(M[w], \min _{x}(M[x]+\operatorname{cost}[x, w])\right)$

If the pointer graph has a cycle, then the graph has a negative cost cycle

- If $P[w]=x$ then $M[w]>=M[x]+\operatorname{cost}(x, w)$
- Equal after update, then $M[x]$ could be reduced
- Let $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \mathrm{v}_{\mathrm{k}}$ be a cycle in the pointer graph with $\left(v_{k}, v_{1}\right)$ the last edge added
- Just before the update
- $M\left[v_{j}\right]>=M\left[v_{j+1}\right]+\operatorname{cost}\left(v_{j+1}, v_{j}\right)$ for $j<k$
- $M\left[v_{k}\right]>M\left[v_{1}\right]+\operatorname{cost}\left(v_{1}, v_{k}\right)$
- Adding everything up

$\cdot 0>\operatorname{cost}\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)+\operatorname{cost}\left(\mathrm{v}_{2}, \mathrm{v}_{3}\right)+\ldots+\operatorname{cost}\left(\mathrm{v}_{\mathrm{k}}, \mathrm{v}_{1}\right)$

Negative Cycles

- If the pointer graph has a cycle, then the graph has a negative cycle
- Therefore: if the graph has no negative cycles, then the pointer graph has no negative cycles

Finding negative cost cycles

-What if you want to find negative cost cycles?

