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CSE 421
Algorithms

Richard Anderson
Lecture 20

Space Efficient LCS

Longest Common Subsequence

• C=c1…cg is a subsequence of A=a1…am if 
C can be obtained by removing elements 
from A (but retaining order)

• LCS(A, B):  A maximum length sequence 
that is a subsequence of both A and B

• Wednesday’s Result:
– O(mn) time, O(mn) space LCS Algorithm

• Today’s Result:
– O(mn) time, O(m+n) space LCS Algorithm

Digression:
String Alignment Problem

• Align sequences with gaps

• Charge δx if character x is unmatched
• Charge γxy if character x is matched to 

character y
• Find alignment to minimize sum of costs
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Optimization Recurrence for the 
String Alignment Problem

• Charge δx if character x is unmatched
• Charge γxy if character x is matched to 

character y
• A = a1a2…am; B = b1b2…bn
• Opt[j, k] is the value of the minimum cost 

alignment a1a2…aj and  b1b2…bk

Dynamic Programming 
Computation Storing the path information

A[1..m],  B[1..n]

for i := 1 to m     Opt[i, 0] := 0;

for j := 1 to n     Opt[0,j] := 0;

Opt[0,0] := 0;

for i := 1 to m

for j := 1 to n

if A[i] = B[j]  {  Opt[i,j] := 1 + Opt[i-1,j-1];  Best[i,j] := Diag; }

else if Opt[i-1, j] >= Opt[i, j-1]

{  Opt[i, j] := Opt[i-1, j], Best[i,j] := Left; }

else        {  Opt[i, j] := Opt[i, j-1], Best[i,j] := Down; }

a1…am

b 1
…

b n
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Observations about the Algorithm

• The computation can be done in O(m+n) 
space if we only need one column of the 
Opt values or Best Values

• The algorithm can be run from either end 
of the strings

Divide and Conquer Algorithm

• Where does the best path cross the 
middle column?

• For a fixed i, and for each j, compute the 
LCS that has ai matched with bj

Constrained LCS

• LCSi,j(A,B):  The LCS such that
– a1,…,ai paired with elements of b1,…,bj

– ai+1,…am paired with elements of bj+1,…,bn

• LCS4,3(abbacbb, cbbaa)

A = RRSSRTTRTS
B=RTSRRSTST

Compute LCS5,0(A,B), LCS5,1(A,B), LCS5,2(A,B),…,LCS5,9(A,B)

A = RRSSRTTRTS
B=RTSRRSTST

Compute LCS5,0(A,B), LCS5,1(A,B), LCS5,2(A,B),…,LCS5,9(A,B)

049
148
137
236
235
334
323
312
311
300
rightleftj

Computing the middle column

• From the left, compute LCS(a1…am/2,b1…bj)
• From the right, compute LCS(am/2+1…am,bj+1…bn)
• Add values for corresponding j’s

• Note – this is space efficient
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Divide and Conquer

• A = a1,…,am B = b1,…,bn

• Find j such that 
– LCS(a1…am/2, b1…bj) and
– LCS(am/2+1…am,bj+1…bn) yield optimal solution

• Recurse

Algorithm Analysis

• T(m,n) = T(m/2, j) + T(m/2, n-j) + cnm

Prove by induction that 
T(m,n) <= 2cmn Shortest Path Problem

• Dijkstra’s Single Source Shortest Paths 
Algorithm
– O(mlog n) time, positive cost edges

• General case – handling negative edges
• If there exists a negative cost cycle, the 

shortest path is not defined
• Bellman-Ford Algorithm

– O(mn) time for graphs with negative cost 
edges

Lemma

• If a graph has no negative cost cycles, 
then the shortest paths are simple paths

• Shortest paths have at most n-1 edges

Shortest paths with a fixed number 
of edges

• Find the shortest path from v to w with 
exactly k edges
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Express as a recurrence

• Optk(w) = minx [Optk-1(x) + cxw]
• Opt0(w) = 0 if v=w and infinity otherwise 

Algorithm, Version 1

foreach w

M[0, w] = infinity;

M[0, v] = 0;

for i = 1 to n-1

foreach w

M[i, w] = minx(M[i-1,x] + cost[x,w]);

Algorithm, Version 2

foreach w

M[0, w] = infinity;

M[0, v] = 0;

for i = 1 to n-1

foreach w

M[i, w] = min(M[i-1, w], minx(M[i-1,x] + cost[x,w]))

Algorithm, Version 3

foreach w

M[w] = infinity;

M[v] = 0;

for i = 1 to n-1

foreach w

M[w] = min(M[w], minx(M[x] + cost[x,w]))

Correctness Proof for Algorithm 3

• Key lemma – at the end of iteration i, for 
all w,  M[w] <= M[i, w];

• Reconstructing the path:
– Set P[w] = x, whenever M[w] is updated from 

vertex x

If the pointer graph has a cycle, then 
the graph has a negative cost cycle
• If P[w] = x then M[w] >= M[x] + cost(x,w)

– Equal after update, then M[x] could be 
reduced

• Let v1, v2,…vk be a cycle in the pointer 
graph with (vk,v1) the last edge added
– Just before the update

• M[vj] >= M[vj+1] + cost(vj+1, vj) for j < k
• M[vk] > M[v1] + cost(v1, vk)

– Adding everything up
• 0 > cost(v1,v2) + cost(v2,v3) + … + cost(vk, v1)

v2 v3

v1 v4
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Negative Cycles

• If the pointer graph has a cycle, then the 
graph has a negative cycle

• Therefore:  if the graph has no negative 
cycles, then the pointer graph has no 
negative cycles

Finding negative cost cycles

• What if you want to find negative cost cycles?


