
1

CSE 421
Algorithms

Richard Anderson
Lecture 11

Minimum Spanning Trees

Announcements

• Monday – Class in EE1 003 (no tablets)

Foreign Exchange Arbitrage

-----0.60.8CAD

1.6------1.2EUR

1.20.8------USD

CADEURUSD

USD

CADEUR

1.2 1.2

0.6

USD

CADEUR

0.8 0.8

1.6

Minimum Spanning Tree

a

b

cs

e

g

f

9

2

13

6

4

11
5

7

20

14

t

u

v

15

10

1

8

12

16

22

17

3

Temporary Assumption:  Edge costs distinct

Why do the greedy algorithms 
work?

• For simplicity, assume all edge costs are distinct
• Let S be a subset of V, and suppose e = (u, v) 

be the minimum cost edge of E, with u in S and 
v in V-S

• e is in every minimum spanning tree
– Or equivalently, if e is not in T, then T is not a 

minimum spanning tree

S V - S

e

Proof 
• Suppose T is a spanning tree that does not contain e
• Add e to T, this creates a cycle
• The cycle must have some edge e1 = (u1, v1) with u1 in S 

and v1 in V-S

• T1 = T – {e1} + {e} is a spanning tree with lower cost
• Hence, T is not a minimum spanning tree

S V - S
e

Why is e lower cost than e1?



2

Optimality Proofs

• Prim’s Algorithm computes a MST

• Kruskal’s Algorithm computes a MST

Reverse-Delete Algorithm

• Lemma:  The most expensive edge on a 
cycle is never in a minimum spanning tree

Dealing with the distinct cost 
assumption

• Force the edge weights to be distinct
– Add small quantities to the weights 
– Give a tie breaking rule for equal weight 

edges 

MST Fun Facts

• The minimum spanning tree is determined 
only by the order of the edges – not by 
their magnitude

• Finding a maximum spanning tree is just 
like finding a minimum spanning tree

Divide and Conquer

Array Mergesort(Array a){

n = a.Length;

if (n <= 1)

return a;

b = Mergesort(a[0..n/2]);

c = Mergesort(a[n/2+1 .. n-1]);

return Merge(b, c);

Algorithm Analysis

• Cost of Merge
• Cost of Mergesort



3

T(n) = 2T(n/2) + cn; T(1) = c; Recurrence Analysis

• Solution methods
– Unrolling recurrence
– Guess and verify
– Plugging in to a “Master Theorem”

A better mergesort (?)

• Divide into 3 subarrays and recursively 
sort

• Apply 3-way merge

T(n) = aT(n/b) + f(n)

T(n) = T(n/2) + cn T(n) = 4T(n/2) + cn



4

T(n) = 2T(n/2) + n2 T(n) = 2T(n/2) + n1/2

Recurrences

• Three basic behaviors
– Dominated by initial case
– Dominated by base case
– All cases equal – we care about the depth


