## Why do the greedy algorithms work?

- For simplicity, assume all edge costs are distinct
- Let $S$ be a subset of $V$, and suppose $e=(u, v)$ be the minimum cost edge of $E$, with $u$ in $S$ and $v$ in V-S
- $e$ is in every minimum spanning tree
- Or equivalently, if $e$ is not in $T$, then $T$ is not a minimum spanning tree


CSE 421
Algorithms
Richard Anderson
Lecture 11
Minimum Spanning Trees


|  | USD | EUR | CAD |
| :--- | :--- | :--- | :--- |
| USD | ------ | 0.8 | 1.2 |
| EUR | 1.2 | ------ | 1.6 |
| CAD | 0.8 | 0.6 | ----- |

## Foreign Exchange Arbitrage

Minimum Spanning Tree


## Announcements

- Monday - Class in EE1 003 (no tablets)

Temporary Assumption: Edge costs distinct


## Optimality Proofs

- Prim's Algorithm computes a MST
- Kruskal's Algorithm computes a MST


## Dealing with the distinct cost assumption

- Force the edge weights to be distinct
- Add small quantities to the weights
- Give a tie breaking rule for equal weight edges


## Reverse-Delete Algorithm

- Lemma: The most expensive edge on a cycle is never in a minimum spanning tree


## MST Fun Facts

- The minimum spanning tree is determined only by the order of the edges - not by their magnitude
- Finding a maximum spanning tree is just like finding a minimum spanning tree



## Algorithm Analysis

- Cost of Merge
- Cost of Mergesort

$$
T(n)=2 T(n / 2)+c n ; T(1)=c ;
$$

## Recurrence Analysis

- Solution methods
- Unrolling recurrence
- Guess and verify
- Plugging in to a "Master Theorem"


## A better mergesort (?)

- Divide into 3 subarrays and recursively sort
- Apply 3-way merge

$$
T(n)=T(n / 2)+c n
$$

$$
T(n)=4 T(n / 2)+c n
$$



## Recurrences

- Three basic behaviors
- Dominated by initial case
- Dominated by base case
- All cases equal - we care about the depth

