
1

CSE 421
Algorithms

Richard Anderson
Lecture 10

Minimum Spanning Trees

Announcements

• Homework 3 is due now
• Homework 4, due 10/26, available now
• Reading

– Chapter 5
– (Sections 4.8, 4.9 will not be covered in class)

• Guest lecturers (10/28 – 11/4)
– Anna Karlin
– Venkat Guruswami

Shortest Paths

• Negative Cost Edges
– Dijkstra’s algorithm assumes positive cost edges
– For some applications, negative cost edges make 

sense
– Shortest path not well defined if a graph has a 

negative cost cycle
a

b

c
s

e

g

f

4

2

-3

6

4

-2
3

4

6

3

7

-4

Negative Cost Edge Preview

• Topological Sort can be used for solving 
the shortest path problem in directed 
acyclic graphs

• Bellman-Ford algorithm finds shortest 
paths in a graph with negative cost edges 
(or reports the existence of a negative cost 
cycle).

Dijkstra’s Algorithm
Implementation and Runtime

S = {};    d[s] = 0;     d[v] = inf for v != s

While S != V

Choose v in V-S with minimum d[v]

Add v to S

For each  w in the neighborhood of v

d[w] = min(d[w], d[v] + c(v, w))

s

u

v

z

y

x

Edge costs are assumed to be non-negative

a

b

HEAP OPERATIONS

n Extract Min

m Heap Update

Bottleneck Shortest Path

• Define the bottleneck distance for a path 
to be the maximum cost edge along the 
path

s

v

x

u
6 5

5

3 4

2



2

Compute the bottleneck shortest 
paths

a

b

cs

e

g

f

d

4

2

-3

6
6

5

4

-2
3

7

6

3

7

4
a

b

cs

e

g

f

d

How do you adapt Dijkstra’s algorithm  
to handle bottleneck distances

• Does the correctness proof still apply?

Minimum Spanning Tree

a

b

cs

e

g

f

9

2

13

6

4

11
5

7

20

14

t

u

v

15

10

1

8

12

16

22

17

3

Greedy Algorithm 1
Prim’s Algorithm

• Extend a tree by including the cheapest 
out going edge

a

b

c
s

e

g

f

9

2

13

6

4

11
5

7

20

14

t

u

v

15

10

1

8

12

16

22

17

3

Greedy Algorithm 2
Kruskal’s Algorithm

• Add the cheapest edge that joins disjoint 
components

a

b

c
s

e

g

f

9

2

13

6

4

11
5

7

20

14

t

u

v

15

10

1

8

12

16

22

17

3

Greedy Algorithm 3
Reverse-Delete

• Delete the most expensive edge that does 
not disconnect the graph

a

b

c
s

e

g

f

9

2

13

6

4

11
5

7

20

14

t

u

v

15

10

1

8

12

16

22

17

3



3

Why do the greedy algorithms 
work?

• For simplicity, assume all edge costs are 
distinct

• Let S be a subset of V, and suppose e = 
(u, v) be the minimum cost edge of E, with 
u in S and v in V-S

• e is in every minimum spanning tree

Proof 
• Suppose T is a spanning tree that does not 

contain e
• Add e to T, this creates a cycle
• The cycle must have some edge e1 = (u1, v1) 

with u1 in S and v1 in V-S

• T1 = T – {e1} + {e} is a spanning tree with lower 
cost

• Hence, T is not a minimum spanning tree

Optimality Proofs

• Prim’s Algorithm computes a MST

• Kruskal’s Algorithm computes a MST

Reverse-Delete Algorithm

• Lemma:  The most expensive edge on a 
cycle is never in a minimum spanning tree

Dealing with the assumption

• Force the edge weights to be distinct
– Add small quantities to the weights 
– Give a tie breaking rule for equal weight 

edges 


