

Draw a picture of David Notkin

Describe an algorithm to determine if an undirected graph has a cycle

Cycle finding

- Does a graph have a cycle?
- Find a cycle
- Find a cycle through a specific vertex v
- Linear runtime: $\mathrm{O}(\mathrm{n}+\mathrm{m})$

Find a cycle through a vertex v

- Not obvious how to do this with BFS from vertex v

Depth First Search

- Each edge goes between vertices on the same branch
- No cross edges

A DFS from vertex v gives a simple algorithm for finding a cycle containing v

How does this algorithm work and why?

Directed Graphs

- A Strongly Connected Component is a subset of the vertices with paths between every pair of vertices.

Topological Sort

- Given a set of tasks with precedence constraints, find a linear order of the tasks

Find a topological order for the following graph

If a graph has a cycle, there is no topological sort

- Consider the first vertex on the cycle in the topological sort
- It must have an incoming edge

Topological Sort Algorithm

While there exists a vertex v with in-degree 0
Output vertex v
Delete the vertex v and all out going edges

Lemma: If a graph is acyclic, it has a vertex with in degree 0

- Proof:
- Pick a vertex v_{1}, if it has in-degree 0 then done
- If not, let $\left(v_{2}, v_{1}\right)$ be an edge, if v_{2} has indegree 0 then done
- If not, let $\left(v_{3}, v_{2}\right)$ be an edge .
- If this process continues for more than n steps, we have a repeated vertex, so we have a cycle

Details for $\mathrm{O}(\mathrm{n}+\mathrm{m})$ implementation

- Maintain a list of vertices of in-degree 0
- Each vertex keeps track of its in-degree
- Update in-degrees and list when edges are removed
- m edge removals at $O(1)$ cost each

