CSE 421
Algorithms
Richard Anderson
Lecture 5
Graph Theory

Explain that there will
be some review from

- $G=(V, E)$

By default $|\mathrm{V}|=n$ and $|\mathrm{E}|=m$

- V - vertices
- E-edges
- Undirected graphs
- Edges sets of two vertices $\{u, v\}$
- Directed graphs
- Edges ordered pairs (u, v)
- Many other flavors
- Edge / vertices weights
- Parallel edges
- Self loops

Definitions

- Path: $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{k}}$, with $\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}+1}\right)$ in E - Simple Path
- Cycle
- Simple Cycle
- Distance
- Connectivity
- Undirected
- Directed (strong connectivity)
- Trees
- Rooted
- Unrooted

Graph search

- Find a path from s to t

$$
S=\{s\}
$$

While there exists (u, v) in E with u in S and v not in S
Pred[v] = u
Add v to S
if $(v=t)$ then path found

Announcements

- Monday's class will be held in CSE 305
- Reading
- Chapter 3
-Start on Chapter 4

Breadth first search

- Explore vertices in layers
- s in layer 1
- Neighbors of s in layer 2
- Neighbors of layer 2 in layer 3 . . .

Key observation

- All edges go between vertices on the same layer or adjacent layers

Testing Bipartiteness

- If a graph contains an odd cycle, it is not bipartite

Bipartite

- A graph V is bipartite if V can be partitioned into V_{1}, V_{2} such that all edges go between V_{1} and V_{2}
- A graph is bipartite if it can be two colored

Algorithm

- Run BFS
- Color odd layers red, even layers blue
- If no edges between the same layer, the graph is bipartite
- If edge between two vertices of the same layer, then there is an odd cycle, and the graph is not bipartite

Corollary

- A graph is bipartite if and only if it has no

Depth first search

- Explore vertices from most recently visited

