CSE 421 Algorithms

Richard Anderson Lecture 4

Announcements

- Homework 2, Due October 12, 1:30 pm.
- · Reading
 - Chapter 3
 - Start on Chapter 4

Polynomial time efficiency

- An algorithm is efficient if it has a polynomial run time
- Run time as a function of problem size
 - Run time: count number of instructions executed on an underlying model of computation
 - T(n): maximum run time for all problems of size at most n

Polynomial Time

 Algorithms with polynomial run time have the property that increasing the problem size by a constant factor increases the run time by at most a constant factor (depending on the algorithm)

Why Polynomial Time?

- Generally, polynomial time seems to capture the algorithms which are efficient in practice
- The class of polynomial time algorithms has many good, mathematical properties

Constant factors and growth rates

- Express run time as O(f(n))

 Ignore constant factors
- · Prefer algorithms with slower growth rates
- Fundamental ideas in the study of algorithms
- Basis of Tarjan/Hopcroft Turing Award

Why ignore constant factors?

- Constant factors are arbitrary – Depend on the implementation
 - Depend on the details of the model
- Determining the constant factors is tedious and provides little insight

Why emphasize growth rates?

- The algorithm with the lower growth rate will be faster for all but a finite number of cases
- Performance is most important for larger problem size
- As memory prices continue to fall, bigger problem sizes become feasible
- Improving growth rate often requires new techniques

Formalizing growth rates

- T(n) is O(f(n)) [T : Z⁺ → R⁺]
 If sufficiently large n, T(n) is bounded by a constant multiple of f(n)
 - Exist c, n_0 , such that for $n > n_0$, T(n) < c f(n)
- T(n) is O(f(n)) will be written as: T(n) = O(f(n))
 - Be careful with this notation

Prove 3n² + 5n + 20 is O(n²) Choose c = 6, n₀ = 5

Lower bounds

- T(n) is Ω(f(n))
 - T(n) is at least a constant multiple of f(n)
 - There exists an n_0 , and ϵ > 0 such that
 - $T(n) > \varepsilon f(n)$ for all $n > n_0$
- Warning: definitions of $\boldsymbol{\Omega}$ vary
- T(n) is $\Theta(f(n))$ if T(n) is O(f(n)) and T(n) is $\Omega(f(n))$

Useful Theorems

- If lim (f(n) / g(n)) = c for c > 0 then f(n) = ⊕(g(n))
- If f(n) is O(g(n)) and g(n) is O(h(n)) then f(n) is O(h(n)))
- If f(n) is O(h(n)) and g(n) is O(h(n)) then f(n) + g(n) is O(h(n))

Ordering growth rates

- For b > 1 and x > 0

 log_b n is O(n^x)
- For r > 1 and d > 0

 n^d is O(rⁿ)

Graph search

· Find a path from s to t

S = {s} While there exists (u, v) in E with u in S and v not in S Pred[v] = u Add v to S if (v = t) then path found

Bipartite

- A graph V is bipartite if V can be partitioned into V11, V2 such that all edges go between V1 and V2
- A graph is bipartite if it can be two colored

Algorithm

- Run BFS
- Color odd layers red, even layers blue
- If no edges between the same layer, the graph is bipartite
- If edge between two vertices of the same layer, then there is an odd cycle, and the graph is not bipartite