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CSE 421
Algorithms

Richard Anderson
Lecture 4

Announcements

• Homework 2, Due October 12, 1:30 pm.
• Reading

– Chapter 3
– Start on Chapter 4

Polynomial time efficiency

• An algorithm is efficient if it has a 
polynomial run time

• Run time as a function of problem size
– Run time: count number of instructions 

executed on an underlying model of 
computation

– T(n): maximum run time for all problems of 
size at most n

Polynomial Time

• Algorithms with polynomial run time have 
the property that increasing the problem 
size by a constant factor increases the run 
time by at most a constant factor 
(depending on the algorithm)

Why Polynomial Time?

• Generally, polynomial time seems to 
capture the algorithms which are efficient 
in practice

• The class of polynomial time algorithms 
has many good, mathematical properties

Constant factors and growth rates

• Express run time as O(f(n))
– Ignore constant factors

• Prefer algorithms with slower growth rates
• Fundamental ideas in the study of 

algorithms
• Basis of Tarjan/Hopcroft Turing Award
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Why ignore constant factors?

• Constant factors are arbitrary
– Depend on the implementation
– Depend on the details of the model

• Determining the constant factors is tedious 
and provides little insight

Why emphasize growth rates?

• The algorithm with the lower growth rate 
will be faster for all but a finite number of 
cases

• Performance is most important for larger 
problem size

• As memory prices continue to fall, bigger 
problem sizes become feasible

• Improving growth rate often requires new 
techniques

Formalizing growth rates

• T(n) is O(f(n))               [T : Z+ R+]
– If sufficiently large n, T(n) is bounded by a 

constant multiple of f(n)
– Exist c, n0, such that for n > n0, T(n) < c f(n)

• T(n) is O(f(n)) will be written as:              
T(n) = O(f(n))
– Be careful with this notation

Prove 3n2 + 5n + 20 is O(n2)

Choose c = 6, n0 = 5

Lower bounds

• T(n) is Ω(f(n))
– T(n) is at least a constant multiple of f(n)
– There exists an n0, and ε > 0 such that       

T(n) > εf(n) for all n > n0

• Warning: definitions of Ω vary

• T(n) is Θ(f(n)) if T(n) is O(f(n)) and         
T(n) is Ω(f(n))

Useful Theorems

• If lim (f(n) / g(n)) = c for c > 0 then           
f(n) = Θ(g(n))

• If f(n) is O(g(n)) and g(n) is O(h(n)) then     
f(n) is O(h(n)))

• If f(n) is O(h(n)) and g(n) is O(h(n)) then 
f(n) + g(n) is O(h(n))
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Ordering growth rates

• For b > 1 and x > 0
– logb n is O(nx)

• For r > 1 and d > 0
– nd is O(rn)

Graph Theory
• G = (V, E)

– V – vertices
– E – edges 

• Undirected graphs
– Edges sets of two vertices {u, v}

• Directed graphs
– Edges ordered pairs (u, v)

• Many other flavors
– Edge / vertices weights
– Parallel edges
– Self loops

Explain that there will 
be some review from 
326

By default |V| = n and |E| = m

Definitions
• Path:  v1, v2, …, vk, with (vi, vi+1) in E

– Simple Path
– Cycle
– Simple Cycle

• Distance
• Connectivity

– Undirected
– Directed (strong connectivity)

• Trees
– Rooted
– Unrooted

Graph search

• Find a path from s to t

S = {s}

While there exists (u, v) in E with u in S and v not in S

Pred[v] = u

Add v to S

if (v = t) then path found

Breadth first search

• Explore vertices in layers
– s in layer 1
– Neighbors of s in layer 2
– Neighbors of layer 2 in layer 3 . . .

Key observation

• All edges go between vertices on the 
same layer or adjacent layers

1

2

8

3

7654



4

Bipartite

• A graph V is bipartite if V can be 
partitioned into V1, V2 such that all edges 
go between V1 and V2

• A graph is bipartite if it can be two colored

Testing Bipartiteness

• If a graph contains an odd cycle, it is not 
bipartite

Algorithm

• Run BFS
• Color odd layers red, even layers blue
• If no edges between the same layer, the 

graph is bipartite
• If edge between two vertices of the same 

layer, then there is an odd cycle, and the 
graph is not bipartite


