CSE 421
Algorithms
Richard Anderson
Lecture 4

Polynomial time efficiency

- An algorithm is efficient if it has a polynomial run time
- Run time as a function of problem size
- Run time: count number of instructions executed on an underlying model of computation
$-T(n)$: maximum run time for all problems of size at most n

Why Polynomial Time?

- Generally, polynomial time seems to capture the algorithms which are efficient in practice
- The class of polynomial time algorithms has many good, mathematical properties

Announcements

- Homework 2, Due October 12, 1:30 pm.
- Reading
- Chapter 3
-Start on Chapter 4

Why ignore constant factors?

- Constant factors are arbitrary
- Depend on the implementation
- Depend on the details of the model
- Determining the constant factors is tedious and provides little insight

Formalizing growth rates

- $T(n)$ is $O(f(n))$
$\left[\mathrm{T}: \mathrm{Z}^{+} \rightarrow \mathrm{R}^{+}\right]$
- If sufficiently large $n, T(n)$ is bounded by a constant multiple of $f(n)$
- Exist $\mathrm{c}, \mathrm{n}_{0}$, such that for $\mathrm{n}>\mathrm{n}_{0}, \mathrm{~T}(\mathrm{n})<\mathrm{cf}(\mathrm{n})$
- $T(n)$ is $O(f(n))$ will be written as:
$T(n)=O(f(n))$
- Be careful with this notation

Lower bounds

- $T(n)$ is $\Omega(f(n))$
$-T(n)$ is at least a constant multiple of $f(n)$
- There exists an n_{0}, and $\varepsilon>0$ such that $T(n)>\varepsilon f(n)$ for all $n>n_{0}$
- Warning: definitions of Ω vary
- $T(n)$ is $\Theta(f(n))$ if $T(n)$ is $O(f(n))$ and $T(n)$ is $\Omega(f(n))$

Why emphasize growth rates?

- The algorithm with the lower growth rate will be faster for all but a finite number of cases
- Performance is most important for larger problem size
- As memory prices continue to fall, bigger problem sizes become feasible
- Improving growth rate often requires new techniques

Prove $3 n^{2}+5 n+20$ is $O\left(n^{2}\right)$

Choose $\mathrm{c}=6, \mathrm{n}_{0}=5$

Ordering growth rates

- For $b>1$ and $x>0$
$-\log _{b} n$ is $O\left(n^{x}\right)$
- For $r>1$ and $d>0$ $-n^{d}$ is $O\left(r^{n}\right)$

Definitions

- Path: $v_{1}, v_{2}, \ldots, v_{k}$, with $\left(v_{i}, v_{i+1}\right)$ in E
- Simple Path
- Cycle
- Simple Cycle
- Distance
- Connectivity
- Undirected
- Directed (strong connectivity)
- Trees
- Rooted
- Unrooted

Explain that there will be some review from
 326 Graph Theory

- $G=(V, E)$

By default $|\mathrm{V}|=\mathrm{n}$ and $|\mathrm{E}|=\mathrm{m}$

- V-vertices
- E-edges
- Undirected graphs
- Edges sets of two vertices $\{u, v\}$
- Directed graphs
- Edges ordered pairs (u, v)
- Many other flavors
- Edge / vertices weights
- Parallel edges
- Self loops

Graph search

- Find a path from s to t

$$
S=\{s\}
$$

While there exists (u, v) in E with u in S and v not in S
$\operatorname{Pred}[v]=u$
Add v to S
if $(v=t)$ then path found

Breadth first search

- Explore vertices in layers
- s in layer 1
- Neighbors of s in layer 2
- Neighbors of layer 2 in layer 3 ...

Key observation

- All edges go between vertices on the same layer or adjacent layers

Bipartite

- A graph V is bipartite if V can be partitioned into $\mathrm{V}_{1}, \mathrm{~V}_{2}$ such that all edges go between V_{1} and V_{2}
- A graph is bipartite if it can be two colored

Testing Bipartiteness

- If a graph contains an odd cycle, it is not bipartite

Algorithm

- Run BFS
- Color odd layers red, even layers blue
- If no edges between the same layer, the graph is bipartite
- If edge between two vertices of the same layer, then there is an odd cycle, and the graph is not bipartite

