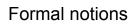


Lecture 2

Announcements

- It's on the web.
- Homework 1, Due Jan 12 – It's on the web
- · Subscribe to the mailing list
- Anna will have an office hour Monday, Jan 9, 11am-noon. CSE 594



- · Perfect matching
- Ranked preference lists
- Stability

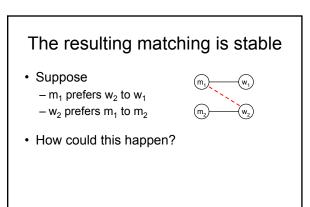
Algorithm

Initially all m in M and w in W are free While there is a free m w highest on m's list that m has not proposed to if w is free, then match (m, w)else suppose (m_2, w) is matched

if w prefers m to m₂ unmatch (m₂, w) match (m, w)

Does this work?

- Does it terminate?
- Is the result a stable matching?
- Begin by identifying invariants and measures of progress
 - m's proposals get worse
 - Once w is matched, w stays matched
 - w's partners get better



Result

- Simple, O(n²) algorithm to compute a stable matching
- Corollary
 - A stable matching always exists

A closer look• Stable matchings are not necessarily fair $m_1: w_1 w_2 w_3$ m_1 $m_2: w_2 w_3 w_1$ m_2 $m_3: w_3 w_1 w_2$ m_3 $w_1: m_2 m_3 m_1$ m_2 $w_1: m_2 m_3 m_1 m_2$ m_3 $w_3: m_1 m_2 m_3$

Algorithm under specified

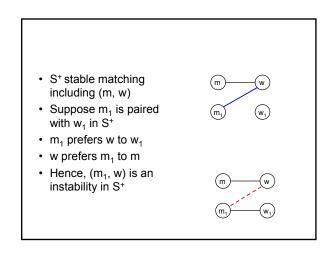
- · Many different ways of picking m's to propose
- · Surprising result
 - All orderings of picking free m's give the same result
- · Proving this type of result
 - Reordering argument
 - Prove algorithm is computing something mores specific
 - Show property of the solution so it computes a specific stable matching

Proposal Algorithm finds the best possible solution for M

- · And the worst possible for W
- (m, w) is valid if (m, w) is in some stable matching
- best(m): the highest ranked w for m such that (m, w) is valid
- S* = {(m, best(m)}
- Every execution of the proposal algorithm computes S*

Proof

- · Argument by contradiction
- Suppose the algorithm computes a matching S different from S*
- There must be some m rejected by a valid partner.
- Let m be the first man rejected by a valid partner w. w rejects m for m₁.
- w = best(m)



The proposal algorithm is worst case for W

- In S*, each w is paired with its worst valid partner
- Suppose (m, w) in S* but not m is not the worst valid partner of w
- S- a stable matching containing the worst valid partner of \boldsymbol{w}
- Let (m_1, w) be in S⁻, w prefers m to m_1
- Let (m, w₁) be in S⁻, m prefers w to w₁
- (m, w) is an instability in S-

Could you do better?

- · Is there a fair matching
- Design a configuration for problem of size
 n:
 - M proposal algorithm:
 - $\ensuremath{\,\bullet\,}$ All m's get first choice, all w's get last choice
 - W proposal algorithm:
 All w's get first choice, all m's get last choice
 - There is a stable matching where everyone gets their second choice

Key ideas for Stable Matching

- Formalizing real world problem
 - Model: graph and preference lists
 - Mechanism: stability condition
- Specification of algorithm with a natural operation
- Proposal
 Establishing termination of process through invariants and progress measure
- Underspecification of algorithm
- Establishing uniqueness of solution

Question

- · Goodness of a stable matching:
 - $-\operatorname{\mathsf{Add}}\nolimits$ up the ranks of all the matched pairs
 - M-rank, W-rank
- Suppose that the preferences are completely random
 - If there are n M's, and n W's, what is the expected value of the M-rank and the W-rank

Expected Ranks

- · Expected M rank
- · Expected W rank

Expected M rank

- Expected M rank is the number of steps until all M's are matched
 - (Also is the expected run time of the algorithm)
- Each steps "selects a w at random" – O(n log n) total steps
 - Average M rank: O(log n)

Expected W rank

- If a w receives k random proposals, the expected rank for w is n/(k+1).
- On the average, a w receives O(log n) proposals
 - The average w rank is O(n/log n)

What is the run time of the Stable Matching Algorithm?

Initially all m in M and w in W are free While there is a free m Executed at most n² times w highest on m's list that m has not proposed to if w is free, then match (m, w)else suppose (m_2, w) is matched if w prefers m to m_2 unmatch (m_2, w) match (m, w)

O(1) time per iteration

- Find free m
- · Find next available w
- If w is matched, determine $\ensuremath{\mathsf{m}}_2$
- Test if w prefer m to $\rm m_2$
- Update matching

What does it mean for an algorithm to be efficient?