
1

CSE 421
Algorithms

Richard Anderson (for Anna Karlin)
Winter 2006

Lecture 2

Announcements

• It’s on the web.
• Homework 1, Due Jan 12

– It’s on the web
• Subscribe to the mailing list

• Anna will have an office hour Monday, Jan
9, 11am-noon. CSE 594

Formal notions

• Perfect matching
• Ranked preference lists
• Stability

m1 w1

m2 w2

Algorithm

Initially all m in M and w in W are free
While there is a free m

w highest on m’s list that m has not proposed to
if w is free, then match (m, w)
else

suppose (m2, w) is matched
if w prefers m to m2

unmatch (m2, w)
match (m, w)

Does this work?

• Does it terminate?
• Is the result a stable matching?

• Begin by identifying invariants and
measures of progress
– m’s proposals get worse
– Once w is matched, w stays matched
– w’s partners get better

The resulting matching is stable

• Suppose
– m1 prefers w2 to w1

– w2 prefers m1 to m2

• How could this happen?

m1 w1

m2 w2

2

Result

• Simple, O(n2) algorithm to compute a
stable matching

• Corollary
– A stable matching always exists

A closer look

• Stable matchings are not necessarily fair

m1: w1 w2 w3

m2: w2 w3 w1

m3: w3 w1 w2

w1: m2 m3 m1

w2: m3 m1 m2

w3: m1 m2 m3

m1

m2

m3

w1

w2

w3

Algorithm under specified

• Many different ways of picking m’s to propose
• Surprising result

– All orderings of picking free m’s give the same result

• Proving this type of result
– Reordering argument
– Prove algorithm is computing something mores

specific
• Show property of the solution – so it computes a specific

stable matching

Proposal Algorithm finds the best
possible solution for M

• And the worst possible for W

• (m, w) is valid if (m, w) is in some stable
matching

• best(m): the highest ranked w for m such
that (m, w) is valid

• S* = {(m, best(m)}
• Every execution of the proposal algorithm

computes S*

Proof

• Argument by contradiction
• Suppose the algorithm computes a

matching S different from S*
• There must be some m rejected by a valid

partner.
• Let m be the first man rejected by a valid

partner w. w rejects m for m1.
• w = best(m)

• S+ stable matching
including (m, w)

• Suppose m1 is paired
with w1 in S+

• m1 prefers w to w1

• w prefers m1 to m
• Hence, (m1, w) is an

instability in S+

m w

m1

m w

m1 w1

w1

3

The proposal algorithm is worst
case for W

• In S*, each w is paired with its worst valid
partner

• Suppose (m, w) in S* but not m is not the worst
valid partner of w

• S- a stable matching containing the worst valid
partner of w

• Let (m1, w) be in S-, w prefers m to m1
• Let (m, w1) be in S-, m prefers w to w1
• (m, w) is an instability in S- m w1

m1 w

Could you do better?

• Is there a fair matching
• Design a configuration for problem of size

n:
– M proposal algorithm:

• All m’s get first choice, all w’s get last choice
– W proposal algorithm:

• All w’s get first choice, all m’s get last choice
– There is a stable matching where everyone

gets their second choice

Key ideas for Stable Matching
• Formalizing real world problem

– Model: graph and preference lists
– Mechanism: stability condition

• Specification of algorithm with a natural
operation
– Proposal

• Establishing termination of process through
invariants and progress measure

• Underspecification of algorithm
• Establishing uniqueness of solution

Question

• Goodness of a stable matching:
– Add up the ranks of all the matched pairs
– M-rank, W-rank

• Suppose that the preferences are
completely random
– If there are n M’s, and n W’s, what is the

expected value of the M-rank and the W-rank

Expected Ranks

• Expected M rank

• Expected W rank

Expected M rank

• Expected M rank is the number of steps
until all M’s are matched
– (Also is the expected run time of the

algorithm)

• Each steps “selects a w at random”
– O(n log n) total steps
– Average M rank: O(log n)

4

Expected W rank

• If a w receives k random proposals, the
expected rank for w is n/(k+1).

• On the average, a w receives O(log n)
proposals
– The average w rank is O(n/log n)

What is the run time of the Stable
Matching Algorithm?

Initially all m in M and w in W are free
While there is a free m

w highest on m’s list that m has not proposed to
if w is free, then match (m, w)
else

suppose (m2, w) is matched
if w prefers m to m2

unmatch (m2, w)
match (m, w)

Executed at most n2 times

O(1) time per iteration

• Find free m
• Find next available w
• If w is matched, determine m2

• Test if w prefer m to m2

• Update matching

What does it mean for an algorithm
to be efficient?

