CSE 421
Algorithms

Richard Anderson
Lecture 2

Announcements

Office Hours

— Richard Anderson, CSE 582
« Monday, 10:00 — 11:00
« Friday, 11:00 — 12:00
— Yiannis Giotas, CSE 220
* Monday, 2:30-3:20
« Friday, 2:30-3:20

* Homework

— Assignment 1, Due Wednesday, October 5
* Reading

— Read Chapters 1 & 2

Stable Matching

 Find a perfect matching with no
instabilities

* Instability
—(my4, wy) and (m,, w,) matched
—m, prefers w, to w,
—w, prefers m; tom,

Intuitive ldea for an Algorithm

* m proposes to w
— If w is unmatched, w accepts
— If w is matched to m,

« If w prefers m to m,, w accepts
« If w prefers m, to m, w rejects

» Unmatched m proposes to highest w on its
preference list

Algorithm

Initially all m in M and w in W are free
While there is a free m
w highest on m’s list that m has not proposed to
if w is free, then match (m, w)
else
suppose (m,, w) is matched
if w prefers m to m,
unmatch (m,, w)
match (m, w)

Does this work?

* Does it terminate?
* Is the result a stable matching?

* Begin by identifying invariants and
measures of progress
—m’s proposals get worse
— Once w is matched, w stays matched
—w’s partners get better




Claim: The algorithm stops in at
most n? steps

* Why?

Each m asks each w at most once

The algorithm terminates with a
perfect matching

* Why?

If m is free, there is a w that has not been
proposed to

The resulting matching is stable

* Suppose

—m, prefers w, to w,

—w, prefers m, to m,

* How could this happen?

m, proposed to w, before w,
m, rejected m,

m, prefers m, to m,

m, prefers m, to m,

Result

» Simple, O(n?) algorithm to compute a
stable matching

» Corollary
— A stable matching always exists

A closer look

+ Stable matchings are not necessarily fair

me W, W, Wy @ @
my W, Wy w

my Wy W, W, @ @
Wy m, my my @ @

W,y mg; m; m,

Wy my; m, my

Algorithm under specified

* Many different ways of picking m’s to propose
+ Surprising result
— All orderings of picking free m’s give the same result

* Proving this type of result
— Reordering argument
— Prove algorithm is computing something mores
specific
« Show property of the solution — so it computes a specific
stable matching




Proposal Algorithm finds the best
possible solution for M
And the worst possible for W

(m, w) is valid if (m, w) is in some stable
matching

best(m): the highest ranked w for m such
that (m, w) is valid

S* = {(m, best(m)}

Every execution of the proposal algorithm
computes S*

Proof

Argument by contradiction

Suppose the algorithm computes a
matching S different from S*

There must be some m rejected by a valid
partner.

Let m be the first man rejected by a valid
partner w. w rejects m for m,.

w = best(m)

S* stable matching @ o
including (m, w)
Suppose m, is paired (m) @

with wy in S*
m, prefers w to w,
w prefers my tom

Since m, could not have been
rejected by w, at this point,
because (m, w) was the first
valid pair rejected. (m,, v,) is
valid because it is in S*.

Hence, (m,, w) is an
instability in S*

C /C
-
-
-
-

-

The proposal algorithm is worst
case for W

In S*, each w is paired with its worst valid
partner

Suppose (m, w) in S* but not m is not the worst
valid partner of w

S- a stable matching containing the worst valid
partner of w

Let (m,, w) be in S-, w prefers m to m,
Let (m, w,) be in S-, m prefers w to w;,
(m, w) is an instability in S-

w prefers m to m, because m, is the wvp ~

w prefers w to w, because S* has all the bvp’s

Could you do better?

Is there a fair matching

Design a configuration for problem of size
n:
— M proposal algorithm:
» All m’s get first choice, all w’s get last choice
— W proposal algorithm:
» All w's get first choice, all m’s get last choice

— There is a stable matching where everyone
gets their second choice

Key ideas

Formalizing real world problem

— Model: graph and preference lists

— Mechanism: stability condition

Specification of algorithm with a natural
operation

— Proposal

Establishing termination of process through
invariants and progress measure
Underspecification of algorithm
Establishing uniqueness of solution




