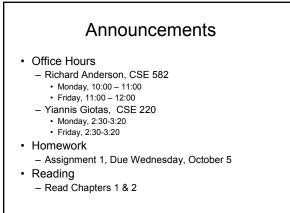
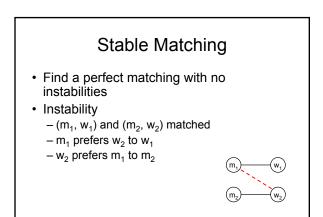
CSE 421 Algorithms

Richard Anderson Lecture 2





Intuitive Idea for an Algorithm

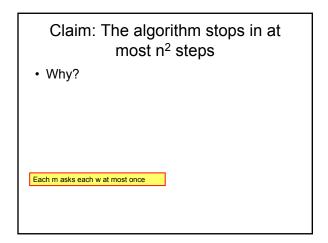
- m proposes to w
 - If w is unmatched, w accepts
 - If w is matched to m₂
 - If w prefers m to m₂, w accepts
 - If w prefers m_2 to m, w rejects
- Unmatched m proposes to highest w on its preference list

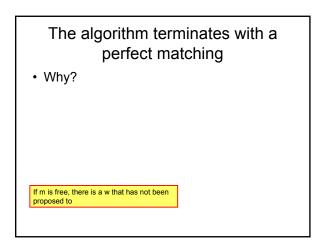
Algorithm

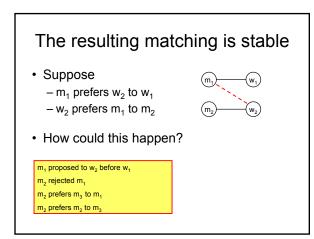
Initially all m in M and w in W are free While there is a free m w highest on m's list that m has not proposed to if w is free, then match (m, w)else suppose (m_2, w) is matched if w prefers m to m_2 unmatch (m_2, w) match (m, w)

Does this work?

- · Does it terminate?
- · Is the result a stable matching?
- Begin by identifying invariants and measures of progress
 - m's proposals get worse
 - Once w is matched, w stays matched
 - w's partners get better

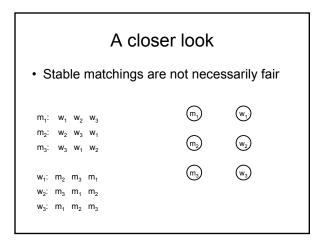


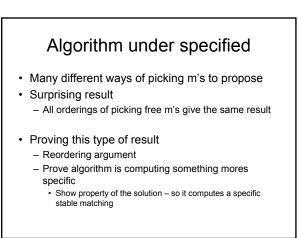




Result

- Simple, O(n²) algorithm to compute a stable matching
- Corollary
 A stable matching always exists



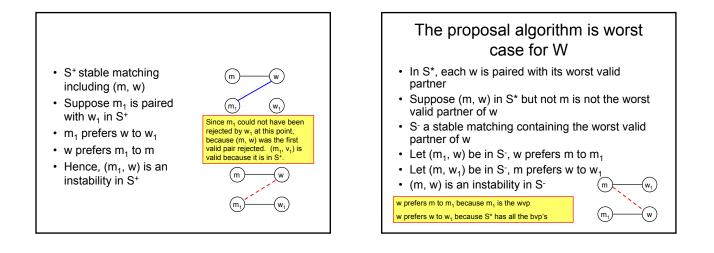


Proposal Algorithm finds the best possible solution for M

- · And the worst possible for W
- (m, w) is valid if (m, w) is in some stable matching
- best(m): the highest ranked w for m such that (m, w) is valid
- S* = {(m, best(m)}
- Every execution of the proposal algorithm computes S*

Proof

- Argument by contradiction
- Suppose the algorithm computes a matching S different from S*
- There must be some m rejected by a valid partner.
- Let m be the first man rejected by a valid partner w. w rejects m for m_1 .
- w = best(m)



Could you do better?

- · Is there a fair matching
- Design a configuration for problem of size n:
 - M proposal algorithm:
 - All m's get first choice, all w's get last choice
 - W proposal algorithm:
 - All w's get first choice, all m's get last choice
 - There is a stable matching where everyone gets their second choice

