

CSE 421 Algorithms

Richard Anderson (for Anna Karlin) Winter 2006 Lecture 1

Course Introduction

- Instructor
 Anna Karlin, <u>karlin@cs.washington.edu</u>
- Impostor

 Richard Anderson, anderson@cs.washington.edu
- Teaching Assistants
 - Lloyd Parlee, parlee@cs.washington.edu
 - Vibhor Rastogi, vibhor@cs.washington.edu

Announcements

- It's on the web.
- Homework 1, Due Jan 12 - It's on the web
- · Subscribe to the mailing list
- Anna will have an office hour Monday, Jan 9, 11am-noon. CSE 594

Text book

- Algorithm Design
- Jon Kleinberg, Eva Tardos
- Read Chapters 1 & 2

All of Computer Science is the Study of Algorithms

How to study algorithms

- Zoology
- Mine is faster than yours is
- · Algorithmic ideas
 - Where algorithms apply
 - What makes an algorithm work
 - Algorithmic thinking

Introductory Problem: Stable Matching

- · Setting:
 - Assign TAs to Instructors
 - Avoid having TAs and Instructors wanting changes
 - E.g., Prof A. would rather have student X than her current TA, and student X would rather work for Prof A. than his current instructor.

Formal notions

- · Perfect matching
- · Ranked preference lists
- Stability

Examples

- m₁: w₁ w₂
- m₂: w₂ w₁
- w₁: m₂ m₁
- w₂: m₁ m₂

Intuitive Idea for an Algorithm

- · m proposes to w
 - If w is unmatched, w accepts
 - If w is matched to m₂
 - If w prefers m to m2, w accepts
 - If w prefers m_2 to m, w rejects
- Unmatched m proposes to highest w on its preference list that m has not already proposed to

Algorithm

Initially all m in M and w in W are free While there is a free m w highest on m's list that m has not proposed to if w is free, then match (m, w)else suppose (m_2, w) is matched if w prefers m to m_2 unmatch (m_2, w) match (m, w)

Does this work?

- Does it terminate?
- · Is the result a stable matching?
- Begin by identifying invariants and measures of progress
 - m's proposals get worse
 - Once w is matched, w stays matched
 - w's partners get better

Algorithm under specified

- · Many different ways of picking m's to propose
- Surprising result

 All orderings of picking free m's give the same result
- Proving this type of result
 - Reordering argument
 - Prove algorithm is computing something mores specific
 - Show property of the solution so it computes a specific stable matching

Proposal Algorithm finds the best possible solution for M

- · And the worst possible for W
- (m, w) is valid if (m, w) is in some stable matching
- best(m): the highest ranked w for m such that (m, w) is valid
- S* = {(m, best(m)}
- Every execution of the proposal algorithm computes S*

Proof

- · Argument by contradiction
- Suppose the algorithm computes a matching S different from S*
- There must be some m rejected by a valid partner.
- Let m be the first man rejected by a valid partner w. w rejects m for m₁.
- w = best(m)

The proposal algorithm is worst case for W

- In S*, each w is paired with its worst valid partner
- Suppose (m, w) in S* but not m is not the worst valid partner of w
- S- a stable matching containing the worst valid partner of \boldsymbol{w}

(w₁

- Let (m₁, w) be in S⁻, w prefers m to m₁
- Let (m, w₁) be in S⁻, m prefers w to w₁
- (m, w) is an instability in S-

w prefers m to m_1 because m_1 is the wvp w prefers w to w_1 because S* has all the bvp's

Could you do better?

- · Is there a fair matching
- Design a configuration for problem of size
 n:
 - M proposal algorithm:
 - All m's get first choice, all w's get last choice
 - W proposal algorithm:
 - All w's get first choice, all m's get last choice
 - There is a stable matching where everyone gets their second choice

Key ideas

- Formalizing real world problem

 Model: graph and preference lists
 Mechanism: stability condition
- Specification of algorithm with a natural operation
 - Proposal
- Establishing termination of process through invariants and progress measure
- Underspecification of algorithm
- Establishing uniqueness of solution