CSE 421
Algorithms
Richard Anderson
Lecture 1

All of Computer Science is the Study of Algorithms

Text book

- Algorithm Design
- Jon Kleinberg, Eva Tardos
- Read Chapters 1 \& 2

All of Computer Science is the
Study of Algorithms

Course Introduction

- Instructor
- Richard Anderson, anderson@cs.washington.edu
- Teaching Assistant
- Yiannis Giotas, giotas@cs.washington.edu

How to study algorithms

- Zoology
- Mine is faster than yours is
- Algorithmic ideas
- Where algorithms apply
- What makes an algorithm work
- Algorithmic thinking

Introductory Problem: Stable Matching

- Setting:
- Assign TAs to Instructors
- Avoid having TAs and Instructors wanting changes
- E.g., Prof A. would rather have student X than her current TA, and student X would rather work for Prof A. than his current instructor.

Examples

- $\mathrm{m}_{1}: \mathrm{w}_{1} \mathrm{w}_{2}$
- $m_{2}: w_{2} w_{1}$
- $m_{1}: w_{1} w_{2}$
- $w_{1}: m_{1} m_{2}$
$m_{2}: w_{1} w_{2}$
- $w_{2}: m_{2} m_{1}$
- $w_{1}: m_{1} m_{2}$
- $\mathrm{w}_{2}: \mathrm{m}_{1} \mathrm{~m}_{2}$

Formal notions

- Perfect matching
- Ranked preference lists
- Stability

Examples

- $\mathrm{m}_{1}: \mathrm{w}_{1} \mathrm{w}_{2}$
- $\mathrm{m}_{2}: \mathrm{W}_{2} \mathrm{~W}_{1}$
- $\mathrm{w}_{1}: \mathrm{m}_{2} \mathrm{~m}_{1}$
- $\mathrm{w}_{2}: \mathrm{m}_{1} \mathrm{~m}_{2}$

Intuitive Idea for an Algorithm

- m proposes to w
- If w is unmatched, w accepts
- If w is matched to m_{2}
- If w prefers m to m_{2}, w accepts
- If w prefers m_{2} to m, w rejects
- Unmatched m proposes to highest w on its preference list

Algorithm

Initially all m in M and w in W are free While there is a free m
w highest on m's list that m has not proposed to
if w is free, then match (m, w)
else
suppose $\left(m_{2}, w\right)$ is matched if w prefers m to m_{2} unmatch $\left(m_{2}, w\right)$ match (m, w)

Does this work?

- Does it terminate?
- Is the result a stable matching?
- Begin by identifying invariants and measures of progress
- m's proposals get worse
- Once w is matched, w stays matched - w's partners get better

The algorithm terminates with a perfect matching

- Why?
- Suppose
$-\mathrm{m}_{1}$ prefers w_{2} to w_{1}
$-w_{2}$ prefers m_{1} to m_{2}

- How could this happen?

