CSE 421 Algorithms

Richard Anderson Lecture 1

Course Introduction

- Instructor
 - Richard Anderson, anderson@cs.washington.edu
- Teaching Assistant
 - Yiannis Giotas, giotas@cs.washington.edu

All of Computer Science is the Study of Algorithms

Mechanics

- · It's on the web
- · Weekly homework
- Midterm
- Final exam
- · Subscribe to the mailing list

Text book

- · Algorithm Design
- Jon Kleinberg, Eva Tardos
- Read Chapters 1 & 2

How to study algorithms

- Zoology
- Mine is faster than yours is
- · Algorithmic ideas
 - Where algorithms apply
 - What makes an algorithm work
 - Algorithmic thinking

Introductory Problem: Stable Matching

- · Setting:
 - Assign TAs to Instructors
 - Avoid having TAs and Instructors wanting changes
 - E.g., Prof A. would rather have student X than her current TA, and student X would rather work for Prof A. than his current instructor.

Formal notions

- · Perfect matching
- · Ranked preference lists
- Stability

Examples

- m₁: w₁ w₂
- m₁: w₁ w₂
- m₂: w₂ w₁
- m₂: w₁ w₂
- w₁: m₁ m₂
- w₁: m₁ m₂
- w₂: m₂ m₁

- w₂: m₁ m₂

Examples

- m₁: w₁ w₂
- m₂: w₂ w₁
- w₁: m₂ m₁
- w₂: m₁ m₂

Intuitive Idea for an Algorithm

- · m proposes to w
 - If w is unmatched, w accepts
 - If w is matched to m₂
 - If w prefers m to m2, w accepts
 - If w prefers m₂ to m, w rejects
- · Unmatched m proposes to highest w on its preference list

Algorithm

Initially all m in M and w in W are free While there is a free m w highest on m's list that m has not proposed to if w is free, then match (m, w)

> suppose (m2, w) is matched if w prefers m to m₂ unmatch (m2, w) match (m, w)

Does this work?

- · Does it terminate?
- Is the result a stable matching?
- Begin by identifying invariants and measures of progress
 - m's proposals get worse
 - Once w is matched, w stays matched
 - w's partners get better

Claim: The algorithms stops in at most n² steps

• Why?

The algorithm terminates with a perfect matching

• Why?

The resulting matching is stable

- Suppose
 - m₁ prefers w₂ to w₁
 - $-w_2$ prefers m_1 to m_2

· How could this happen?