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Some Problems

• Independent-Set:
– Given a graph G=(V,E) and an integer k, is there a

subset U of V with |U| ≥ k such that no two
vertices in U are joined by an edge.

• Clique:
– Given a graph G=(V,E) and an integer k, is there a

subset U of V with |U| ≥ k such that every pair of
vertices in U is joined by an edge.
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Some More Problems

• Hamilton Tour:
• Given a graph G=(V,E) is there a simple cycle of length |V|,

i.e.traversing each vertex once.

• Euler Tour:
• Given a graph G=(V,E) is there a cycle traversing each edge

once.

• TSP:
• Given a weighted graph G=(V,E,w) and an integer k, is there

a Hamilton tour of G with total weight ≤ k.
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Satisfiability

• Boolean variables x1,...,xn
• taking values in {0,1}.  0=false, 1=true

• Literals
• xi or ¬xi for i=1,...,n

• Clause
• a logical OR of one or more literals
• e.g. (x1 ∨ ¬x3 ∨ x7 ∨ x12)

• CNF formula
• a logical AND of a bunch of clauses
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Satisfiability

• CNF formula example
• (x1 ∨ ¬x3 ∨ x7 ∨ x12) ∧ ( x2 ∨ ¬x4 ∨ x7 ∨ x5)

• If there is some assignment of 0’s and 1’s to
the variables that makes it true then we say
the formula is satisfiable
• the one above is, the following isn’t
• x1 ∧ (¬x1 ∨ x2) ∧ (¬x2 ∨ x3) ∧ ¬x3

• Satisfiability:  Given a CNF formula F, is it
satisfiable?
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Some History

• 1930's
– What is (is not) computable

• 1960/70's
– What is (is not) feasibly computable

– Goal – a (largely) technology independent theory of
time required by algorithms

– Key modeling assumptions/approximations
• Asymptotic (Big-O), worst case is revealing
• Polynomial, exponential time – qualitatively different
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Polynomial vs
Exponential Growth
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4140n0 ‡n0 +12n

410400n0 ‡n0+102n /10

1.25  x 104104n0 ‡3√2 n0O(n3)
1.4  x 106106n0 ‡√2 n0O(n2)
2  x 10121012n0 ‡2n0O(n)

IncreaseComplexity

Another view of Poly vs Exp

Next year's computer will be 2x faster.  If I can
solve problem of size N0 today, how large a
problem can I solve in the same time next
year?

E.g. T=1012
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Polynomial versus exponential

• We’ll say any algorithm whose run-time is
– polynomial is good
– bigger than polynomial is bad

• Note – of course there are exceptions:
– n100 is bigger than (1.001)n for most practical values of n but

usually such run-times don’t show up
– There are algorithms that have run-times like O(2n/22)  and

these may be useful for small input sizes, but they're not too
common either
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Some Convenient Technicalities

• "Problem" – the general case
– Ex: The Clique Problem: Given a graph G and an

integer k, does G contain a k-clique?
• "Problem Instance" – the specific cases

– Ex: Does                     contain a 4-clique? (no)
– Ex: Does                     contain a 3-clique? (yes)

• Decision Problems – Just Yes/No answer
• Problems as Sets of "Yes" Instances

– Ex: CLIQUE = { (G,k) | G contains a k-clique }
• E.g., (                 , 4) ∉  CLIQUE
• E.g., (                 , 3) ∈  CLIQUE
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Decision problems

• Computational complexity usually analyzed using
decision problems
– answer is just 1 or 0  (yes or no).

• Why?
– much simpler to deal with
– deciding whether G has a k-clique, is certainly no harder

than finding a k-clique in G, so a lower bound on deciding is
also a lower bound on finding

– Less important, but if you have a good decider, you can
often use it to get a good finder.  (Ex.: does G still have a k-
clique after I remove this vertex?)
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Decision problem as a Language-
recognition problem

• Let U be the set of all possible inputs to the
decision problem.

• L ⊆ U = the set of all inputs for which the
answer to the problem is yes.

• We call L the language corresponding to the
problem. (problem = language)

• The decision problem is thus:
– to recognize whether or not a given input belongs

to L = the language recognition problem.
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Computational Complexity

• Classify problems according to the amount of
computational resources used by the best algorithms
that solve them

• Recall:  
– worst-case running time of an algorithm

• max # steps algorithm takes on any input of size n
• Define:

– TIME(f(n)) to be the set of all decision problems solved by
algorithms having worst-case running time O(f(n))
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Polynomial time

• Define P (polynomial-time) to be
– the set of all decision problems solvable by

algorithms whose worst-case running time is
bounded by some polynomial in the input size.

• P = Uk≥0TIME(nk)
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The class P

Definition: P = set of (decision) problems solvable by
computers in polynomial time.

i.e. T(n) = O(nk) for some k.
• These problems are sometimes called tractable

problems.

Examples: sorting, SCC, matching, max flow, shortest
path, MST – all of 421 up to now except
Stamps/Knapsack/Partition
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Beyond P?

• There are many natural, practical problems
for which we don’t know any polynomial-time
algorithms

• e.g. decisionTSP:
– Given a weighted graph G and an integer k, does

there exist a tour that visits all vertices in G having
total weight at most k?
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Solving TSP given a solution to
decisionTSP

• Use binary search and several calls to decisionTSP
to figure out what the exact total weight of the
shortest tour is.
– Upper and lower bounds to start are n times largest and

smallest weights of edges, respectively
– Call W the weight of the shortest tour.

• Now figure out which edges are in the tour
– For each edge e in the graph in turn, remove e and see if

there is a tour of weight at most W using decisionTSP
• if not then e must be in the tour so put it back
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More History – As of 1970

• Many of the above problems had been
studied for decades

• All had real, practical applications
• None had poly time algorithms; exponential

was best known

• But, it turns out they all have a very deep
similarity under the skin
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Some Problem Pairs

• Euler Tour
• 2-SAT
• Min Cut
• Shortest Path

• Hamilton Tour
• 3-SAT
• Max Cut
• Longest Path
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Some Problem Pairs

• Euler Tour
• 2-SAT
• Min Cut
• Shortest Path

• Hamilton Tour
• 3-SAT
• Max Cut
• Longest Path

Similar pairs; seemingly
different computationally

Superficially different;
sim

ilar com
putationally
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Common property of these problems

• There is a special piece of information, a short hint or
proof, that allows you to efficiently verify (in
polynomial-time) that the YES answer is correct.
This hint might be very hard to find

• e.g.
– DecisionTSP: the tour itself,
– Independent-Set, Clique: the set U
– Satisfiability: an assignment that makes F true.
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The complexity class NP

NP consists of all decision problems where

• You can verify the YES answers efficiently (in
polynomial time) given a short (polynomial-size) hint

And

• No hint can fool your polynomial time verifier into
saying YES for a NO instance

• (implausible for all exponential time problems)
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More Precise Definition of NP

• A decision problem is in NP iff there is a
polynomial time procedure v(.,.), and an
integer k such that
– for every YES problem instance x there is a hint h

with |h| ≤ |x|k such that v(x,h) = YES
and
– for every NO problem instance x there is no hint h

with |h| ≤ |x|k such that v(x,h) = YES
• “Hints” sometimes called “Certificates”

CSE 421, W `04, Ruzzo 24

Is it correct?

• For every x = (G,k) such that G contains a k-
clique, there is a hint h that will cause v(x,h)
to say YES, namely h = a list of the vertices in
such a k-clique

and
• No hint can fool v into saying yes if either x

isn't well-formed (the uninteresting case) or if
x = (G,k) but G does not have any cliques of
size k (the interesting case)



  

 5

CSE 421, W `04, Ruzzo 25

Keys to showing  that
a problem is in NP

• What's the output?  (must be YES/NO)
• What's the input?  Which are YES?
• For every given YES input, is there a hint that

would help?
– OK if some inputs need no hint

• For any given NO input, is there a hint that
would trick you?
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Complexity Classes

P

NPNP = Polynomial-time
verifiable

P   = Polynomial-time
solvable
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Example: CLIQUE is in NP

procedure v(x,h)
if

x is a well-formed representation of  a graph G =
(V, E) and an integer k,

and
h is a well-formed representation of a k vertex
subset U of V,

and
U is a clique in G,

then output "YES"
else output "I'm unconvinced"
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Alternative Definition:
NP = Nondeterministic P Time

• Imagine a nondeterministic algorithm: read
input, compute, make nondeterministic
choices, …, eventually arrive at “Accept” or
“Quit” state.

• The language accepted = those inputs for
which some (nondeterministically chosen)
computation sequence leads to “Accept”

• NB: sequence ending in “Quit” does not mean
input is rejected; only reject if all lead to
“Quit.”
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Equivalence of Definitions

• “hint” ⊆ “nondet”:
nondeterministically guess the hint, then
verify it determnistically

• “nondet” ⊆  “hint” :
verify by running the nondet algorithm, using
successive bits of the hint to determine the
successive nondet choices to follow.
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A problem NOT in NP;
2 bogus proofs to the contrary

• EEXP = {(p,x) | program p accepts input x in
< 22|x| steps }

NON Theorem: EEXP in NP
• “Proof” 1: Hint = step-by-step trace of the

computation of p on x; verify step-by-step
• “Proof” 2: nondeterministically guess whether

accepts x, and accept if so.
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Solving NP problems
without hints/nondeterminism

• The only obvious algorithm for most of
these problems is brute force:
– try all possible hints and check each one to

see if it works.
– Exponential time:

• 2n truth assignments for n variables
• n! possible TSP tours of n vertices
•      possible k element subsets of n vertices
• etc.









k

n
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Problems in P can also be verified in
polynomial-time

Shortest Path: Given a graph G with edge lengths,
is there a path from s to t of length ≤ k?

Verify: Given a path from s to t, is its length ≤ k?

Small Spanning Tree: Given a weighted undirected
graph G, is there a spanning tree of weight ≤ k?

Verify: Given a spanning tree, is its weight ≤ k?
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P vs NP vs Exponential Time

• Theorem: Every problem in
NP can be solved
deterministically in
exponential time

• Proof: the nondeterministic
algorithm makes only nk nd-
choices.  Try all 2nk

possibilities; if any succeed,
accept; if all fail, reject.

nk

2nk

accept
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What We Know

• Nobody knows if all problems in NP can be
done in polynomial time, i.e. does P=NP?
– one of the most important open questions in all of

science.
– huge practical implications

• Every problem in P is in NP
– one doesn’t even need a hint for problems in P so

just ignore any hint you are given
• Every problem in NP is in exponential time
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P and NP

NP

P

Exp

• Every problem in P is in NP
– one doesn’t even need a hint for

problems in P so just ignore any
hint you are given

– Equivalently, a “nondet” algorithm
doesn’t need to use
nondeterminism

• Every problem in NP is in
exponential time
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P vs NP

• Theory
– P = NP ?
– Open Problem!
– I bet against it

• Practice
– Many interesting, useful, natural,

well-studied problems known to
be NP-complete

– With rare exceptions, no one
routinely succeeds in finding
exact solutions to large, arbitrary
instances
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More Connections

• Some Examples in NP
– Satisfiability
– Independent-Set
– Clique
– Vertex Cover

• All hard to solve; hints seem to help on all
• Very surprising fact:

– Fast solution to any gives fast solution to all!
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Nondeterminism

• A nondeterministic algorithm has all the
“regular” operations of any other algorithm
available to it.

• In addition, it has a powerful primitive, the
nd-choice primitive.

• The nd-choice primitive is associated with a
fixed number of choices, such that each
choice causes the algorithm to follow a
different computation path.
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Nondeterminism (cont.)

• A nondeterministic algorithm consists of an
interleaving of regular deterministic steps and
uses of the nd-choice primitive.

• Definition: the algorithm accepts a language L
if and only if
– It has at least one “good” (accepting) sequence of

choices for every x ∈ L, and
– For all x ∉ L, it reaches a reject outcome on all

paths.
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The class NP-complete

We are pretty sure that no problem in NP –  P
can be solved in polynomial time.

Non-Definition: NP-complete = the hardest
problems in the class NP.  (Formal definition
later.)

Interesting fact: If any one NP-complete
problem could be solved in polynomial time,
then all NP-complete problems could be
solved in polynomial time.
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Complexity Classes

NP = Poly-time verifiable

P  = Poly-time solvable

NP-Complete = “Hardest” 
    problems in NP

NP

P

NP-Complete
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The class NP-complete (cont.)

Thousands of important problems have been
shown to be NP-complete.

Fact (Dogma): The general belief is that there
is no efficient algorithm for any NP-complete
problem, but no proof of that belief is known.

Examples: SAT, clique, vertex cover,
Hamiltonian cycle, TSP, bin packing.
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NP

P

NP-Complete

 sorting
 SCC
 max flow
 MST

 SAT
 clique
 vertex cover
 traveling salesman

Complexity Classes of Problems
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Does P = NP?

• This is an open question.
• To show that P = NP, we have to show that

every problem that belongs to NP can be
solved by a polynomial time deterministic
algorithm.

• No one has shown this yet.
• (It seems unlikely to be true.)
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Earlier in this class we learned techniques for
solving problems in P.

Question: Do we just throw up our hands if we
come across a problem we suspect not to be
in P?
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Dealing with NP-complete Problems

What if I think my problem is not in P?

Here is what you might do:
1) Prove your problem is NP-hard or -complete

 (a common, but not guaranteed outcome)
2) Come up with an algorithm to solve the

problem usually or approximately.

CSE 421, W `04, Ruzzo 47

Reductions: a useful tool

Definition: To reduce A to B means to figure out
how to solve A, given a subroutine solving B.

Example: reduce MEDIAN to SORT
Solution: sort, then select (n/2) th

Example: reduce SORT to FIND_MAX
Solution: FIND_MAX, remove it, repeat

Example: reduce MEDIAN to FIND_MAX
Solution: transitivity: compose solutions above.
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More Examples of reductions

Example:
reduce BIPARTITE_MATCHING to   MAX_FLOW

s t

All capacities = 1

Is there a flow of size k?
u v

Is there a matching of size k?

f
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Polynomial-Time Reductions

Definition: Let L1 and L2 be two languages
from the input spaces U1 and U2.

We say that L1 is polynomially reducible to L2
if there exists a polynomial-time algorithm f
that converts each input u1 ∈ U1 to another
input u2 ∈ U2 such that u1 ∈ L1 iff u2 ∈ L2.

u1 ∈ L1   ⇔   f(u1) ∈ L2
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Polynomial-time Reduction from language L1 to
language L2 via reduction function f.

L1

U1 U2

L2
f

u1 ∈ L1   ⇔   f(u1) ∈ L2 
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Polynomial-Time Reductions (cont.)

Define: A ≤p
 B  “A is polynomial-time reducible to

B”, iff there is a polynomial-time computable
function f such that:   x ∈ A   ⇔   f(x) ∈ B

“complexity of A” ≤ “complexity of B” + “complexity of f”

(1)  A ≤p
 B  and  B ∈ P   ⇒   A ∈ P

(2)  A ≤p
 B  and  A ∉ P   ⇒   B ∉ P

(3)  A ≤p
 B  and  B ≤p

 C   ⇒   A ≤p
 C  (transitivity)
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Using an Algorithm for B to Decide A

Algorithm 
to compute f

x Algorithm 
to decide B

f(x) f(x) ∈ B? x ∈ A?

Algorithm to decide A

“If A ≤p
 
B, and we can solve B in polynomial time,

then we can solve A in polynomial time also.”

Ex: suppose f takes O(n3) and algorithm for B takes O(n2).  
How long does the above algorithm for A take?
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Definition of NP-Completeness

Definition: Problem B is NP-hard if every
problem in NP is polynomially reducible to B.

Definition: Problem B is NP-complete if:
(1) B belongs to NP, and
(2) B is NP-hard.
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Proving a problem is NP-complete

• Technically,for condition (2) we have to show
that every problem in NP is reducible to B.
(yikes!) This sounds like a lot of work.

• For the very first NP-complete problem
(SAT) this had to be proved directly.

• However, once we have one NP-complete
problem, then we don’t have to do this every
time.

• Why? Transitivity.
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Re-stated Definition

Lemma 11.3: Problem B is NP-complete if:
(1)  B belongs to NP, and
(2’) A is polynomial-time reducible to B, for

some problem A that is NP-complete.

That is, to show (2’) given a new problem B, it is
sufficient to show that SAT or any other
NP-complete problem is polynomial-time
reducible to B.
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Usefulness of Transitivity

Now we only have to show L’ ≤p
 L  , for some

problem L’∈ NP-complete, in order to show
that L is NP-hard. Why is this equivalent?

1) Since L’∈ NP-complete, we know that L’ is
NP-hard.  That is:

∀ L’’∈ NP, we have L’’ ≤p
 L’

2) If we show L’ ≤p
 L, then by transitivity we know

that: ∀ L’’∈ NP, we have L’’ ≤p
 L.

Thus L is NP-hard.

CSE 421, W `04, Ruzzo 57

The growth of the number of NP-
complete problems

• Steve Cook (1971) showed that SAT was
NP-complete.

• Richard Karp (1972) found 24 more
NP-complete problems.

• Today there are thousands of known
NP-complete problems.
–  Garey and Johnson (1979) is an excellent source

of NP-complete problems.
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SAT is NP-complete

Cook’s theorem: SAT is NP-complete

Satisfiability (SAT)
A Boolean formula in conjunctive normal form (CNF)

is satisfiable if there exists a truth assignment of
0’s and 1’s to its variables such that the value of
the expression is 1.  Example:

S=(x+y+¬z)•(¬x+y+z)•(¬x+¬y+¬z)
Example above is satisfiable.  (We an see this by

setting x=1, y=1 and z=0.)
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SAT is NP-complete

Rough idea of proof:

(1) SAT is in NP because we can guess a truth
assignment and check that it satisfies the
expression in polynomial time.

(2) SAT is NP-hard because …..

Cook proved it directly, but easier to see via an
intermediate problem – Circuit-SAT
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P Is Reducible To The
Circuit Value Problem

Registers/Latches/Memory

 Combinational Logic,
Large Rat’s Nest of

Really,
Really,

Fast Clock

Combinational Logic

Combinational Logic

Combinational Logic

Accept?

T

T
Input
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NP Is Reducible To The
Circuit Satisfiability Problem

Registers/Latches/Memory

Combinational Logic,
Large Rat’s Nest of

Really,
Really

Fast Clock

T

Combinational Logic

Combinational Logic

Combinational Logic

Accept?

T
“Input”

ND
bit

N
D

 b
its
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To Prove SAT is NP-complete

• Show it’s in NP:  Exercise
(Hint: what’s an easy-to-check certificate of satisfiability?)

• Pick a known NP-complete problem
& reduce it to SAT
– Gee, How about Circuit-SAT?

Good idea; it’s the only NP-complete problem we have so far

– What we need:
a fast, mechanical way to “simulate” a circuit by a formula
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Circuit-SAT
≤p 3-SAT

(w1⇔(x1∧x2))∧(w2⇔(¬w1))∧(w3⇔(w2∨x1))∧w3

Replace with 3-CNF Equivalent:

x1 x2 w1   (x1∧x2)) ¬(w1⇔(x1∧x2))
0 0 0 0 0
0 0 1 0 1 ← ¬x1 ∧ ¬x2 ∧   w1
0 1 0 0 0
0 1 1 0 1 ← ¬x1 ∧    x2 ∧   w1
1 0 0 0 0
1 0 1 0 1 ←   x1 ∧  ¬x2 ∧   w1
1 1 0 1 1 ←   x1 ∧  ¬x2 ∧ ¬w1
1 1 1 1 0

(x1∨x2∨¬w1)∧(x1∨¬x2∨¬w1)∧(¬x1∨x2∨¬w1)∧(¬x1∨¬x2∨w1)

∧ ¬ ∨x1

x2
w1 w2 w3

¬
clause →

Truth Table →
D

N
F;  D

eM
organ →

C
N

F
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Correctness of “Circuit-SAT ≤p 3-SAT”

Summary of reduction function f:
Given circuit, add variable for every gate’s value, build clause for
each gate, satisfiable iff gate value variable is appropriate logical
function of its input variables, convert each to CNF via standard
truth-table construction. Output conjunction of all, plus output
variable.  Note: f does not know whether circuit or formula are
satisfiable or not; does not try to find satisfying assignment.

Correctness:
1. Show f poly time computable: A key point is that formula size is

linear in circuit size; mapping basically straightforward.
2. Show c in Circuit-SAT iff f(c) in SAT:

(⇒) Given an assignment to xi’s satisfying c, extend it to wi’s by
evaluating the circuit on xi’s gate by gate.  Show this satisfies f(c).
(⇐) Given an assignment to xi’s & wi’s satisfying f(c), show xi’s
satisfy c (with gate values given by wi’s).
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How do you prove problem A
is NP-complete?

1) Prove A is in NP:  show that given a solution, it can
be verified in polynomial time.

2) Prove that A is NP-hard:
a) Select a known NP-complete problem B.
b) Describe a polynomial time computable algorithm
that computes a function f, mapping every instance
of B to an instance of A.    (that is:  B ≤p

 A )
c) Prove that if b is a yes-instance of B then f(b) is a
yes-instance of A.  Conversely, if f(b) is a yes-
instance of A, then b must be yes-instance of B.
d) Prove that the algorithm computing f runs in 
polynomial time.
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Input: Undirected graph G = (V, E), integer k.
Output: True iff there is a subset C of V of

size ≤ k such that every edge in E is incident
to at least one vertex in C.

Example: Vertex cover of size ≤ 2.

In NP?  Exercise

NP-complete problem: Vertex Cover
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3SAT ≤p VertexCover
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3SAT ≤p VertexCover
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3SAT ≤p VertexCover
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3SAT ≤p VertexCover

k=6
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3SAT ≤p VertexCover

f                                       =
3-SAT Instance:

– Variables: x1, x2, … 
– Literals: yi,j, 1 ≤ i ≤ q, 1 ≤ j ≤ 3
– Clauses: ci = yi1 ∨ yi2 ∨ yi3, 1 ≤ I ≤ q
– Formula: c = c1 ∧ c2 ∧ … ∧ cq

VertexCover Instance:
– k = 2q
– G = (V, E)
– V = { [i,j] | 1 ≤ i ≤ q, 1 ≤ j ≤ 3 }

– E = { ( [i,j], [k,l] ) | i = k or yij = ¬ykl }
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   (x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1  ∨ x3)

x1 x1

x3

x2 ¬x2

¬x3 ¬x3

¬x1

k=6

x3

3SAT ≤p VertexCover
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Correctness of “3-SAT ≤p VertexCover”

Summary of reduction function f:
Given formula, make graph G with one group per clause, one node per
literal.  Connect each to all nodes in same group, plus complementary
literals (x, ¬x). Output graph G plus integer k = 2 * number of clauses.
Note: f does not know whether formula is satisfiable or not; does not know
if G has k-cover; does not try to find satisfying assignment or cover.

Correctness:
1. Show f poly time computable: A key point is that graph size is polynomial

in formula size; mapping basically straightforward.
2. Show c in 3-SAT iff f(c)=(G,k) in VertexCover:

(⇒) Given an assignment satisfying c, pick one true literal per clause.
Add other 2 nodes of each triangle to cover.  Show it is a cover: 2 per
triangle cover triangle edges; only true literals uncovered, so at least one
end of every (x, ¬x) edge is covered.
(⇐) Given a k-vertex cover in G, uncovered labels define a valid (perhaps
partial) truth assignment since no (x, ¬x) pair uncovered.  It satisfies c
since there is one uncovered node in each clause triangle (else some
other clause triangle has > 1 uncovered node, hence an uncovered edge.) CSE 421, W `04, Ruzzo 79

NP-complete problem: Clique

Input: Undirected graph G = (V, E), integer k.
Output: True iff there is a subset C of V of

size ≥ k such that all vertices in C are
connected to all other vertices in C.

Example: Clique of size ≥ 4

In NP?  Exercise
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3SAT ≤p Clique

f                                       =
3-SAT Instance:

– Variables: x1, x2, … 
– Literals: yi,j, 1 ≤ i ≤ q, 1 ≤ j ≤ 3
– Clauses: ci = yi1 ∨ yi2 ∨ yi3, 1 ≤ I ≤ q
– Formula: c = c1 ∧ c2 ∧ … ∧ cq

VertexCover Instance:
– K = q
– G = (V, E)
– V = { [i,j] | 1 ≤ i ≤ q, 1 ≤ j ≤ 3 }

– E = { ( [i,j], [k,l] ) | i ≠ k and yij ≠ ¬ykl }
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3SAT ≤p Clique

   (x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1  ∨ x3)

x1 x1 x3

x2 ¬x2

¬x3 ¬x3 ¬x1

k=3
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Correctness of “3-SAT ≤p Clique”

Summary of reduction function f:
Given formula, make graph G with column of nodes per clause, one node
per literal.  Connect each to all nodes in other columns, except
complementary literals (x, ¬x). Output graph G plus integer k = number of
clauses.  Note: f does not know whether formula is satisfiable or not; does
not know if G has k-clique; does not try to find satisfying assignment or
clique.

Correctness:
1. Show f poly time computable: A key point is that graph size is polynomial

in formula size; mapping basically straightforward.
2. Show c in 3-SAT iff f(c)=(G,k) in Clique:

(⇒) Given an assignment satisfying c, pick one true literal per clause.
Show corresponding nodes in G are k-clique.
(⇐) Given a k-clique in G, clique labels define a truth assignment; show it
satisfies c.  Note: literals in a clique are a valid truth assignment [no “(x,
¬x)” edges] & k nodes must be 1 per column, [no edges within columns].
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NP-complete problem: 3-Coloring

Input: An undirected graph G=(V,E).
Output: True iff there is an assignment of at

most 3 colors to the vertices in G such that no
two adjacent vertices have the same color.

Example:

In NP?  Exercise
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A 3-Coloring Gadget:

In what ways can this be 3-colored?

T

F
N
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A 3-Coloring Gadget:
"Sort of an OR gate"

(1) if any input is T, the output can be T

(2) if output is T, some input must be T

T

F
N

output

inputs

Exercise: find
all colorings
of 5 nodes
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3SAT ≤p 3Color

f                                       =
3-SAT Instance:

– Variables: x1, x2, … 
– Literals: yi,j, 1 ≤ i ≤ q, 1 ≤ j ≤ 3
– Clauses: ci = yi1 ∨ yi2 ∨ yi3, 1 ≤ I ≤ q
– Formula: c = c1 ∧ c2 ∧ … ∧ cq

3Color Instance:
– G = (V, E)
– 6 q + 2 n + 3 vertices
– 13 q + 3 n + 3 edges
– (See Example for details)

x1

¬x1

x2

¬x2

T

F
N

 (x1 ∨ ¬x1 ∨ ¬x1) 
∧ 

(¬x1 ∨ x2 ∨ ¬x2)
3SAT ≤p 3Color Example
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Correctness of “3-SAT ≤p 3Coloring”

Summary of reduction function f:
Given formula, make G with T-F-N triangle, 1 pair of literal nodes per
variable, 2 “or” gadgets per clause, connected as in example.
Note: again, f does not know or construct satisfying assignment or coloring.

Correctness:
1. Show f poly time computable: A key point is that graph size is polynomial in

formula size; graph looks messy, but pattern is basically straightforward.
2. Show c in 3-SAT iff f(c) is 3-colorable:

(⇒) Given an assignment satisfying c, color literals T/F as per assignment;
can  color “or” gadgets so output nodes are T since each clause is satisfied.
(⇐) Given a 3-coloring of f(c), name colors T-N-F as in example.  All square
nodes are T or F (since all adjacent to N).  Each variable pair (xi, ¬xi) must
have complementary labels since they’re adjacent.  Define assignment
based on colors of xi’s.  Clause “output” nodes must be colored T since
they’re adjacent to both N & F.   By fact noted earlier, output can be T only if
at least one input is T, hence it is a satisfying assignment.
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Common Errors in
NP-completeness Proofs

• Backwards reductions
E.g., Biconnectivity ≤p SAT is true, but not so
useful. (XYZ ≤p SAT shows XYZ in NP, does not
show that it’s hard.)

• Sloooow Reductions
“Find a satisfying assignment, then output…”

• Half Reductions
e.g. delete dashed edges in 3Color reduction.  It’s
still true that “c satisfiable ⇒ G is 3 colorable”, but
3-colorings don’t necessarily give good
assignments
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Coping with NP-Completeness

• Is your real problem a special subcase?
– E.g. 3-SAT is NP-complete, but 2-SAT is not;
– Ditto  3- vs 2-coloring
– E.g. maybe you only need planar graphs, or  degree 3

graphs, or …
• Guaranteed approximation good enough?

– E.g. Euclidean TSP within 1.5 * Opt in poly time
• Clever exhaustive search, e.g. Branch & Bound
• Heuristics – usually a good approximation and/or

usually fast
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NP-complete problem: TSP

Input: An undirected graph G=(V,E) with integer
edge weights, and an integer b.

Output: True iff there is a simple cycle in G
passing through all vertices (once), with total
cost ≤ b.

Example:
b = 34

5

3

4 6

4
7

2

5

8
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2x Approximation to EuclideanTSP

• A TSP tour visits all vertices, so contains a
spanning tree, so TSP cost is > cost of min
spanning tree.

• Find MST
• Double all edges
• Find Euler Tour
• Shortcut
• Cost of shortcut < ET = 2 * MST < 2 * TSP

5

3

4

2

5
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1.5x Approximation to EuclideanTSP

• Find MST
• Find min cost matching

among odd-degree
tree vertices

• Cost of matching ≤ TSP/2
• Find Euler Tour
• Shortcut
• Shortcut  ≤ ET ≤ MST + TSP/2 < 1.5* TSP

5

3

4

2

5
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Matching ≤ TSP/2

• Oval=TSP
• Big dots=

odd tree
nodes

• Blue, Green
= 2 matchings

• Blue + Green ≤ TSP
(by triangle inequality)

• So min matching ≤ TSP/2
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Summary

• Big-O    –  good
• P           –  good
• Exp       –  bad
• Hints help?  NP
• NP-hard, NP-complete – bad (I bet)
• To show NP-complete – reductions
• NP-complete = hopeless? – no, but you need to

lower your expectations: heuristics & approximations.


