
CSci 421
Introduction to Algorithms
Homework Assignment 6
Due: Friday, 12 Mar 2004

Reading: Chapter 11

1. (a) Draw the residual graph corresponding to the flow in figure 7.41, pg241. Is this flow maximum? Why or
why not? If maximum, what is the corresponding min cut?

(b) Repeat part (a) assuming c(v, u) = 6 (instead of 4, as shown in the figure).

2. Let G = (V, E) be a directed graph with edge capacities given by c : E → <+ (the non-negative reals),
f : V × V → < be a flow on G (as defined in lecture; I think you’ll find it simpler to work with than
the definition on page 238). Let Gf be the residual graph induced by f . Finally let g : V × V → < be a flow
function on Gf (not G), and define h : V ×V → < to be f +g, i.e. for all u, v ∈ V, h(u, v) = f(u, v)+g(u, v).

Prove or disprove: h is a flow on G.

Note: I showed in lecture that this result is true in the special case where g sends a non-zero flow only along a
single s–t path, so the question here is whether that generalizes to an arbitrary augmenting flow.

3. Note: In this prob. and the next, as in lecture, I use the terms alternating and augmenting path slightly differently
from the book. A path is alternating with respect to a given matching M if its edges alternate between M and
E − M . An augmenting path is an alternating path whose end points are both unmatched. Compare to the
book’s definition on page 236.

Let G be the bipartite graph shown in figure 7.37, page 236. Let M be the (non-maximum) matching { {3, A}, {4, E}, {6, F}}.

(a) List 3 alternating paths that are not augmenting paths.

(b) List all augmenting paths in G (with respect to M).

(c) What is the smallest set of pairwise vertex-disjoint augmenting paths? What is the largest?

(d) Let P be the augmenting path of length 3 containing {4, E}. Considering M and P to be sets of edges,
M⊕P is their set theoretic symmetric difference: (M∪P )−(M∩P ). What set of edges is M ′ = M⊕P ?
Is it a matching?

4. Let G be any bipartite graph, M any matching in G, and P any augmenting path (with respect to M ).

(a) Prove that M ′ = M ⊕ P is a matching.

(b) Show |M ′| = |M | + 1. How is the set of matched vertices in M ′ related to the set of matched vertices in
M and the set of vertices (incident to edges) in P ?

(c) Give a counterexample to 4a if P is an arbitrary path, i.e. show that there is a graph G, matching M and
path P such that M ⊕ P is not a matching. Is it true or false if P is an alternating path that is not an
augmenting path? Prove or give a counterexample.

5. Optional extra credit:

(a) Continuing the previous problem, suppose that there are two augmenting paths P and P ′ with respect to
M , and that P and P ′ are vertex-disjoint. Show that P ′ also is an augmenting path with respect to the
augmented matching (M ⊕P ), and similarly that P is augmenting with respect to (M ⊕P ′). What could
you say about a case where there were, say, 17 pairwise disjoint paths P1, . . . , P17, all augmenting paths
with respect to M? What, and how big, is M ⊕ P1 ⊕ · · · ⊕ P17?

(b) The Hopcroft-Karp bipartite matching algorithm sketched in class and the book needs a subroutine for the
following problem: Given a directed acyclic graph G with a designated set U of vertices having indegree
0 (the source vertices) and a designated set V of vertices having outdegree 0 (the sinks), find a maximal
set of pairwise vertex disjoint paths that go from some source to some sink. Give a linear time algorithm
for this problem.
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[Note that in the matching example the graph G has the additional property that, since it is produced by
breadth-first search, it is nicely layered — each vertex has been assigned a layer number with all sources
on layer 0, all sinks on layer k for some fixed k, and all edges going from a layer i to the next layer i + 1.
Although I confess I haven’t given it much thought, I don’t think this extra information is either necessary
or particularly useful in solving the problem, BUT you may assume it if you find it helpful.]

6. 11.5. Is the formula satisfiable? Does the graph contain a clique? Because the graph is built from the formula
by a reduction, the answer to both questions should be the same. Furthermore, because of the way the reduction
works, each satisfying assignment (there may be several) corresponds to at least one particular clique and vice
versa. Give one satisfying assignment and list all its corresponding cliques. If possible, find a clique not in that
list, and give its corresponding assignment; is it a satisfying assignment?

7. 11.7. Use the definition from page 357. You may assume that Partition is NP-complete.

8. Optional Extra Credit: 11.24

9. Optional Extra Credit: 11.31
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