CSE 421:
Introduction to Algorithms

Dynamic Programming

“Dynamic Programming”

Program — A plan or procedure for dealing
with some matter - webster's New World Dictionary

CSE 421, 01, Ruzzo

Dynamic Programming

Outline:
Example 1 — Licking Stamps
General Principles
Example 2 — Knapsack (§5.10)
Example 3 — Sequence Comparison (§6.8)

CSE 421, '01, Ruzzo

Licking Stamps

Given:
Large supply of 5¢, 4¢, and 1¢ stamps
An amount N

Problem: choose fewest stamps totaling N

CSE 421, '01, Ruzzo

How to Lick 27¢

#of5¢ | #of4¢ | #of 1¢ | Total
Stamps | Stamps | Stamps | Number

5 0 2 7
4 1 3 8
3 3 0 6

Moral: Greed doesn’t pay

CSE 421, '01, Ruzzo

A Simple Algorithm

At most N stamps needed, etc.
fora=0, ..., N{
forb=0,...,N{
forc=0, ..., N{
if (5a+4b+c == N && a+b+c is new min)
{retain (a,b,c);}}}
output retained triple;

Time: O(N?)

(Not too hard to see some optimizations, but we're after bigger fish...)

CSE 421, '01, Ruzzo

Better Idea

Theorem: If last stamp licked in an optimal
solution has value v, then previous stamps
form an optimal solution for N-v.

Proof: if not, we could improve the solution
for N by using opt for N-v.

0 i=0

M(i) = min %:mg::ig :;i where M(i) = min number

HM(i-1) i=1 of stamps totaling i¢

CSE 421, '01, Ruzzo 7

New Idea: Recursion

o =0
o=l 3 15
1+M(i-1) izl

22 23 26

I T T

17 18 2118 19 2221 22 25

Time: > 3N5

CSE 421, 01, Ruzzo

Another New Idea:
Avoid Recomputation

Tabulate values of solved subproblems
Top-down: “memoization”

Bottom up:
o i=0
fori=0, .., Ndo Mm[i]=minyi M= 250
MY i1
Time: O(N)
CSE 421, '01, Ruzzo 9

Finding How Many Stamps

M()

o
=
N
W,
=
=
N
w
N

1+Min(3,1,3) = 2

CSE 421, '01, Ruzzo

10

Finding Which Stamps:

Trace-Back
i 0/1(2|3|4|5(6|7|8(9|10|11|12|13|14
m@|o[1]2{3(1)1]2{3}2

1+Min(3,1,3) = 2

CSE 421, '01, Ruzzo 11

Complexity Note

O(N) is better than O(N3) or O(3V/5)

But still exponential in input size
(log N bits)

E.g., miserably slow if N is 64 bits — c-2%* steps for 64 bit input..
i bly slow if N i bif 64 f bit i

Note: can do in O(1) for 5¢, 4¢, and 1¢ but not
in general. See “NP-Completeness” later

CSE 421, '01, Ruzzo

12

Elements of Dynamic
Programming

What feature did we use?
What should we look for to use again?

“Optimal Substructure”
Optimal solution contains optimal subproblems

“Repeated Subproblems”

The same subproblems arise in various ways

CSE 421, '01, Ruzzo 13

The Knapsack Problem (§ 5.10)

Given positive integers W, wy, Wy, ..., W,
Find a subset of the w;'s totaling exactly W.
Alternate (Easier?) Problem: |s there one?

(Like stamp problem, but limited supply of each.)

Moativation: simple 1-d abstraction of packing
boxes, trucks, VLSI chips, ...

CSE 421, 01, Ruzzo 14

Knapsack

Example Wy, ... W,=2,59 11

W =14
YES:5+9 =14

W =15
NO:
all singletons < 11: too small
all pairs too small, except
9+11, 5+11 too big 21 possibilities
all triples > 16: too big
all quadruples: too big

CSE 421, '01, Ruzzo 15

Solve by Induction? Try 1
Defn: Let P(i) be true iff there is a subset
of first i weights wy, wW,, ..., w; totaling W

Assume we know how to evaluate P(n-1)
Case 1: P(n-1) = True — done; w,, unneeded
Case 2: P(n-1) = False — may or may not be a
solution, but if there is one, it includes w,, and
other included weights total W-w,,,
but I.H. doesn't tell us how to find it. @

Solve by Induction? Try 2

Defn: Let P(i, X) be true iff there is a subset of
first i weights Wy, Wy, ..., W; totaling X

Assume we know P(n-1, X) for all X <W
Case 1: P(n-1, W) = True — done; w, unneeded
Case 2: P(n-1, W) = False — may or may not be a
solution, but if there is one, it includes w,,, and other
weights total W-w,,, so P(n, W) = P(n-1, W-w,) @
Algorithm:
P(n,W) =P(n-1, W) O(P(n-1, W-w,) if W-w,20)
Basis: P(0, X) = True iff (X ==0)

CSE 421, '01, Ruzzo 17

CSE 421, 01, Ruzzo 16
Knapsack [P(,W) = P(n-1, W) OP(n-1, W-w,) |
Example Wy, .. W;=2,5,9,11 W=15
AX 01234 5678 9101112131415
010000000000O0O0O00O0O0
1101000O00O0O0O0O0O0OO0O0O
21010010100000000
31010010101 0/10010O0
410100101010100(D)0O

14: Yes —//

15: No

CSE 421, '01, Ruzzo 18

Dynamic Programming?

P(n,W) = P(n-1, W) OP(n-1, W-w,))

Optimal substructure?

Best/only way to fill a big knapsack implicitly
fills smaller ones with fewer objects in the
best or only way

Repeated subproblems?

Smallest cases potentially common to many
bigger instances

CSE 421, '01, Ruzzo

19

Complexity Notes
Time is O(N W)
May or may not beat naive 2N

But still partially exponential in input size
(N log W bits)
E.g., 100 weights, 64 bits each — 100 « 254 array elements.
C.v., e.g., Skyline 100 bldgs, 64 bit coords — ¢ * 100 « log 100 steps.

See “NP-Completeness” later

CSE 421, 01, Ruzzo 20

