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CSE 421: 
Introduction to Algorithms

Dynamic Programming
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“Dynamic Programming”

Program — A plan or procedure for dealing 
with some matter – Webster’s New World Dictionary
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Dynamic Programming

• Outline:
§ Example 1 – Licking Stamps

§General Principles
§ Example 2 – Knapsack ( § 5.10 )

§ Example 3 – Sequence Comparison ( § 6.8 )
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Licking Stamps

• Given: 
§ Large supply of 5¢, 4¢, and 1¢ stamps

§ An amount N

• Problem: choose fewest stamps totaling N
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How to Lick 27¢

# of 5¢ 
Stamps 

# of 4¢ 
Stamps 

# of 1¢ 
Stamps 

Total 
Number 

5 0 2 7 

4 1 3 8 

3 3 0 6 

 

 

Moral: Greed doesn’t pay
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A Simple Algorithm

• At most N stamps needed, etc.
for a = 0, …, N {

for b = 0, …, N {
for c = 0, …, N {

if (5a+4b+c == N && a+b+c is new min)
{retain (a,b,c);}}}

output retained triple;

• Time: O(N3)
(Not too hard to see some optimizations, but we’re after bigger fish…)
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Better Idea

Theorem: If last stamp licked in an optimal 
solution has value v, then previous stamps 
form an optimal solution for N-v. 

Proof: if not, we could improve the solution 
for N by using opt for N-v.
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New Idea: Recursion

��

�
�
�

��

�
�
�

≥
≥
≥
=

−+
−+
−+=

1
4
5
0

)1(1
)4(1
)5(1

0

min)(

i
i
i
i

iM
iM
iMiM

27

22 23 26

17     18   21  18   19     22  21 22       25

Time:  > 3N/5

...
...

...
...

...
...

...
...

...

CSE 421, ’01, Ruzzo 9

Another New Idea:
Avoid Recomputation

• Tabulate values of solved subproblems
§ Top-down: “memoization”

§ Bottom up: 

for i = 0, …, N do ;

• Time: O(N)
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Finding How Many Stamps

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
M(i) 0 1 2 3 1 1 2 3 2       

1+Min(3,1,3) = 2
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Finding Which Stamps:
Trace-Back

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
M(i) 0 1 2 3 1 1 2 3 2       

1+Min(3,1,3) = 2

4¢
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Complexity Note

• O(N) is better than O(N3) or O(3N/5)

• But still exponential in input size 
(log N bits)

(E.g., miserably slow if N is 64 bits – c•264 steps for 64 bit input.)

• Note: can do in O(1) for 5¢, 4¢, and 1¢ but not 
in general.  See “NP-Completeness” later
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Elements of Dynamic 
Programming

• What feature did we use?
• What should we look for to use again?

• “Optimal Substructure” 
Optimal solution contains optimal subproblems

• “Repeated Subproblems”
The same subproblems arise in various ways
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The Knapsack Problem (§ 5.10)

Given positive integers W, w1, w2, …, wn,

Find a subset of the wi’s totaling exactly W.
Alternate (Easier?) Problem: Is there one?

(Like stamp problem, but limited supply of each.)

Motivation: simple 1-d abstraction of packing 
boxes, trucks, VLSI chips, …
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Knapsack 
Example w1, …, w4 = 2, 5, 9, 11

• W = 14
§ YES: 5+9 = 14

• W = 15
§ NO:

§ all singletons 
�
 11: too small

§ all pairs too small, except 
9+11, 5+11 too big

§ all triples �  16: too big
§ all quadruples: too big

2n possibilities
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Solve by Induction?  Try 1

• Defn: Let P(i) be true iff there is a subset 
of first i weights w1, w2, …, wi totaling W 

• Assume we know how to evaluate P(n-1) 
§Case 1: P(n-1) = True – done; wn unneeded
§Case 2: P(n-1) = False – may or may not be a 

solution, but if there is one, it includes wn, and 
other included weights total W-wn, 
but I.H. doesn't tell us how to find it.  
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Solve by Induction?  Try 2

• Defn: Let P(i, X) be true iff there is a subset of 
first i weights w1, w2, …, wi totaling X

• Assume we know P(n-1, X) for all X 
�
 W

§ Case 1: P(n-1, W) = True – done; wn unneeded
§ Case 2: P(n-1, W) = False – may or may not be a 

solution, but if there is one, it includes wn, and other 
weights total W-wn, so P(n, W) = P(n-1, W-wn)

• Algorithm: 
§ P(n,W) = P(n-1, W) ∨ ( P(n-1, W-wn) if W-wn �  0 )
§ Basis: P(0, X) = True iff (X == 0)
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Knapsack 
Example

i\X  0   1   2   3   4   5   6   7   8   9 10 11 12 13 14 15
0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
1   1   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0
2   1   0   1   0   0   1   0   1   0   0   0   0   0   0   0   0
3   1   0   1   0   0   1   0   1   0   1   0   1   0   0   1   0
4   1   0   1   0   0   1   0   1   0   1   0   1   0   0   1   0

W = 14: Yes
W = 15: No

P(n,W) = P(n-1, W) ∨ P(n-1, W-wn)

w1, …, w4 = 2, 5, 9, 11    W=15
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Dynamic Programming?

P(n,W) = P(n-1, W) ∨ P(n-1, W-wn)

• Optimal substructure? 
Best/only way to fill a big knapsack implicitly 

fills smaller ones with fewer objects in the 
best or only way

• Repeated subproblems?
Smallest cases potentially common to many 
bigger instances
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Complexity Notes

• Time is O(N W)

• May or may not beat naïve 2N

• But still partially exponential in input size 
(N log W bits)          
§ E.g., 100 weights, 64 bits each – 100 • 264 array elements.
§ C.v., e.g., Skyline 100 bldgs, 64 bit coords – c • 100 • log 100 steps.

• See “NP-Completeness” later


