
1

1

CSE 421:
Introduction to Algorithms

Dynamic Programming

CSE 421, ’01, Ruzzo 2

“Dynamic Programming”

Program — A plan or procedure for dealing
with some matter – Webster’s New World Dictionary

CSE 421, ’01, Ruzzo 3

Dynamic Programming

• Outline:
§ Example 1 – Licking Stamps

§General Principles
§ Example 2 – Knapsack (§ 5.10)

§ Example 3 – Sequence Comparison (§ 6.8)

CSE 421, ’01, Ruzzo 4

Licking Stamps

• Given:
§ Large supply of 5¢, 4¢, and 1¢ stamps

§ An amount N

• Problem: choose fewest stamps totaling N

CSE 421, ’01, Ruzzo 5

How to Lick 27¢

of 5¢
Stamps

of 4¢
Stamps

of 1¢
Stamps

Total
Number

5 0 2 7

4 1 3 8

3 3 0 6

Moral: Greed doesn’t pay

CSE 421, ’01, Ruzzo 6

A Simple Algorithm

• At most N stamps needed, etc.
for a = 0, …, N {

for b = 0, …, N {
for c = 0, …, N {

if (5a+4b+c == N && a+b+c is new min)
{retain (a,b,c);}}}

output retained triple;

• Time: O(N3)
(Not too hard to see some optimizations, but we’re after bigger fish…)

2

CSE 421, ’01, Ruzzo 7

Better Idea

Theorem: If last stamp licked in an optimal
solution has value v, then previous stamps
form an optimal solution for N-v.

Proof: if not, we could improve the solution
for N by using opt for N-v.

��

�
�
�

��

�
�
�

≥
≥
≥
=

−+
−+
−+=

1
4
5
0

)1(1
)4(1
)5(1

0

min)(

i
i
i
i

iM
iM
iMiM where M(i) = min number

of stamps totaling i¢

CSE 421, ’01, Ruzzo 8

New Idea: Recursion

��

�
�
�

��

�
�
�

≥
≥
≥
=

−+
−+
−+=

1
4
5
0

)1(1
)4(1
)5(1

0

min)(

i
i
i
i

iM
iM
iMiM

27

22 23 26

17 18 21 18 19 22 21 22 25

Time: > 3N/5

...
...

...
...

...
...

...
...

...

CSE 421, ’01, Ruzzo 9

Another New Idea:
Avoid Recomputation

• Tabulate values of solved subproblems
§ Top-down: “memoization”

§ Bottom up:

for i = 0, …, N do ;

• Time: O(N)
�
�
�

�
�
�

≥
≥
≥
=

−+
−+
−+=

1
4
5
0

]1[1
]4[1
]5[1

0

 min][

i
i
i
i

iM
iM
iMiM

CSE 421, ’01, Ruzzo 10

Finding How Many Stamps

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
M(i) 0 1 2 3 1 1 2 3 2

1+Min(3,1,3) = 2

CSE 421, ’01, Ruzzo 11

Finding Which Stamps:
Trace-Back

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
M(i) 0 1 2 3 1 1 2 3 2

1+Min(3,1,3) = 2

4¢

CSE 421, ’01, Ruzzo 12

Complexity Note

• O(N) is better than O(N3) or O(3N/5)

• But still exponential in input size
(log N bits)

(E.g., miserably slow if N is 64 bits – c•264 steps for 64 bit input.)

• Note: can do in O(1) for 5¢, 4¢, and 1¢ but not
in general. See “NP-Completeness” later

3

CSE 421, ’01, Ruzzo 13

Elements of Dynamic
Programming

• What feature did we use?
• What should we look for to use again?

• “Optimal Substructure”
Optimal solution contains optimal subproblems

• “Repeated Subproblems”
The same subproblems arise in various ways

CSE 421, ’01, Ruzzo 14

The Knapsack Problem (§ 5.10)

Given positive integers W, w1, w2, …, wn,

Find a subset of the wi’s totaling exactly W.
Alternate (Easier?) Problem: Is there one?

(Like stamp problem, but limited supply of each.)

Motivation: simple 1-d abstraction of packing
boxes, trucks, VLSI chips, …

CSE 421, ’01, Ruzzo 15

Knapsack
Example w1, …, w4 = 2, 5, 9, 11

• W = 14
§ YES: 5+9 = 14

• W = 15
§ NO:

§ all singletons
�
 11: too small

§ all pairs too small, except
9+11, 5+11 too big

§ all triples � 16: too big
§ all quadruples: too big

2n possibilities

CSE 421, ’01, Ruzzo 16

Solve by Induction? Try 1

• Defn: Let P(i) be true iff there is a subset
of first i weights w1, w2, …, wi totaling W

• Assume we know how to evaluate P(n-1)
§Case 1: P(n-1) = True – done; wn unneeded
§Case 2: P(n-1) = False – may or may not be a

solution, but if there is one, it includes wn, and
other included weights total W-wn,
but I.H. doesn't tell us how to find it.

CSE 421, ’01, Ruzzo 17

Solve by Induction? Try 2

• Defn: Let P(i, X) be true iff there is a subset of
first i weights w1, w2, …, wi totaling X

• Assume we know P(n-1, X) for all X
�
 W

§ Case 1: P(n-1, W) = True – done; wn unneeded
§ Case 2: P(n-1, W) = False – may or may not be a

solution, but if there is one, it includes wn, and other
weights total W-wn, so P(n, W) = P(n-1, W-wn)

• Algorithm:
§ P(n,W) = P(n-1, W) ∨ (P(n-1, W-wn) if W-wn � 0)
§ Basis: P(0, X) = True iff (X == 0)

CSE 421, ’01, Ruzzo 18

Knapsack
Example

i\X 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0
3 1 0 1 0 0 1 0 1 0 1 0 1 0 0 1 0
4 1 0 1 0 0 1 0 1 0 1 0 1 0 0 1 0

W = 14: Yes
W = 15: No

P(n,W) = P(n-1, W) ∨ P(n-1, W-wn)

w1, …, w4 = 2, 5, 9, 11 W=15

4

CSE 421, ’01, Ruzzo 19

Dynamic Programming?

P(n,W) = P(n-1, W) ∨ P(n-1, W-wn)

• Optimal substructure?
Best/only way to fill a big knapsack implicitly

fills smaller ones with fewer objects in the
best or only way

• Repeated subproblems?
Smallest cases potentially common to many
bigger instances

CSE 421, ’01, Ruzzo 20

Complexity Notes

• Time is O(N W)

• May or may not beat naïve 2N

• But still partially exponential in input size
(N log W bits)
§ E.g., 100 weights, 64 bits each – 100 • 264 array elements.
§ C.v., e.g., Skyline 100 bldgs, 64 bit coords – c • 100 • log 100 steps.

• See “NP-Completeness” later

